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Abstract

With the emergence of autonomous vehicles comes the requirement of adequate
and rigorous testing, particularly in critical scenarios that are both challenging and
potentially hazardous. Generating synthetic simulation-based critical scenarios for
testing autonomous vehicles has therefore received considerable interest, yet it is
unclear how such scenarios relate to the actual crash or near-crash scenarios in the
real world. Consequently, their realism is unknown. In this paper, we define realism
as the degree of similarity of synthetic critical scenarios to real-world critical
scenarios. We propose a methodology to measure realism using two metrics, namely
attribute distribution and Euclidean distance. The methodology extracts various
attributes from synthetic and realistic critical scenario datasets and performs a set
of statistical tests to compare their distributions and distances. As a proof of concept
for our methodology, we compare synthetic collision scenarios from DeepScenario
against realistic autonomous vehicle collisions collected by the Department
of Motor Vehicles in California, to analyse how well DeepScenario synthetic
collision scenarios are aligned with real autonomous vehicle collisions recorded in
California. We focus on five key attributes that are extractable from both datasets,
and analyse the attribution distribution and distance between scenarios in the two
datasets. Further, we derive recommendations to improve the realism of synthetic
scenarios based on our analysis. Our study of realism provides a framework that
can be replicated and extended for other dataset both concerning real-world and
synthetically-generated scenarios.
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1 Introduction

Autonomous vehicles (AVs) are expected to improve road safety, traffic efficiency,
and mobility (Neurohr et al. 2020). Before they can be deployed on public roads
on a large scale, they need to be tested adequately and rigorously (Lou et al. 2022;
Riedmaier et al. 2020; Tang et al. 2023). As the SOTIF (Road vehicles—Safety of
the intended functionality 2022) standard articulates, we need to test all relevant
scenarios for AVs, especially in those challenging conditions for the sensors and
systems (Siemens 2022), which are often known as critical scenarios (Zhang
et al. 2023; Song et al. 2024b; Hallerbach et al. 2018). In addition, the latest EU
regulation for type approval of AVs also requires manufacturers to test not only
critical scenarios observed from natural driving data, but also reasonably foreseeable
ones (European Commission 2022; Song et al. 2024b).

Although collecting critical scenarios from real-world traffic is valuable,
simulation is commonly employed for its accessibility and efficiency. Therefore,
synthetic critical scenario identification has received considerable attention,
serving as a complement to real-world data collection (Song et al. 2024b; Zhang
et al. 2023). The identification process typically involves simulating various
driving scenarios and optimising the generation of critical scenarios with respect
to different performance metrics or criteria (Zhang et al. 2023; Lou et al. 2022;
Song et al. 2024b). The resulting critical scenarios are those that expose risks of
harm to the AV within its operational design domain (ODD), such as collisions with
other road users or infrastructure. These risks may stem from errors in the AV or
challenging situations beyond the AV’s capability to manage. Despite the extensive
body of studies reported, the overwhelming majority of them primarily focus on the
approaches and tool chains for identifying critical scenarios, leaving the evaluation
of resulting scenarios unexplored. Consequently, the realism of such scenarios and
their relevance to testing AVs/ADS is unclear.

To remedy the gaps, our goals are to (1) devise a quantified methodology for
measuring the realism of synthetic critical scenarios, (2) apply this methodology to
an existing dateset, as a proof of concept, in order to show its applicability, and (3)
derive guidelines to improve the realism of the scenarios considered in our proof
of concept for testing AVs/ADS. To enable evaluation from both macroscopic and
microscopic perspectives, we define realism as the degree of similarity of a set of
synthetic critical scenarios to realistic critical scenarios; to quantify realism, we use
two metrics: (1) attribute distribution—distribution of scenario attributes in the two
datasets and (2) Euclidean distance—the straight-line distance between scenarios in
a vectorised space. In line with the goals, we formulate two research questions for
this study:

RQ1: How can we quantify the realism of a synthetic (simulation-based) dataset
for critical scenarios?

¢ RQ1.1: How can we quantify realism using a comparison of the distribution
of attributes and Euclidean distance in a vectorised space?
e RQ1.2: What are the attributes that are causal for realistic AV collisions?
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e RQ1.3: Are causal parameters identified in RQ1.2 included proportionately
in synthetically generated scenarios?

RQ2: What can be improved to generate more realistic synthetic critical
scenarios?

e RQ2.1: What are the guidelines for closing the reality gaps in synthetic
scenarios?

e RQ2.2: What are the guidelines for field testing with synthetically generated
scenarios?

We select two AV collision scenario sets for our proof of concept, namely a
realistic set from DMV (Department of Motor Vehicles) California (California
Department of Motor Vehicles 2023), and a synthetic set from DeepScenario (Lu
et al. 2023a, b). DMV California provides collision reports from manufacturers
during test drives in California (California Department of Motor Vehicles 2023).
DeepScenario generates synthetic collision scenarios on a San Francisco map using
Apollo ADS and SVL simulator (Lu et al. 2023a, b). The two datasets are selected
primarily based on the facts that they are (1) the most extensive ones to the best
of our knowledge, (2) documented in a standard and structured specification, (3)
publicly available, and (4) both concern the same geographical area. The purpose is
to analyse how well the synthetic collision scenarios generated by DeepScenario are
aligned with real autonomous vehicle collisions recorded in California, and derive
general recommendations to improve the realism of synthetic critical scenarios.

We extract five relevant attributes that are available for both datasets, including
weather, lighting, roadway surface, roadway conditions, and collision type. Then,
we compare the attribute distribution and Euclidean distance between DeepScenario
and DMV California data to reveal their similarities. Lastly, we interview the
author of DeepScenario to assess our evaluation results and analysis. Although
the attribute distribution differs significantly, we observe DeepScenario generates
similar collision scenarios as in DMV California from a distance perspective. To
improve the realism and future evaluation of synthetic scenarios, we recommend
(1) incorporating more realistic attributes and values in synthetic critical scenario
identification, (2) validating and improving the quality of simulators to ensure a
faithful representation, and (3) developing comprehensive guidelines for scenario
collection and specification.

Our proof of concept evaluates the applicability of our method and serves the
first step towards measuring the realism of synthetic critical scenarios. Currently,
the proof of concept is subject to several limitations: (1) the selected datasets
are still too small (however, they are steadily growing in size); (2) the attributes
extracted are limited; and (3) contextual information such as test arrangement are
unavailable. Thus, we come up with guidelines on how to extend the available
datasets and improve the data gathering methods to enable more precise analysis.
We would also like to include other datasets and additional attributes to perform
more sophisticated evaluations in future work. Considering realism is an essential
quality for AVs/ADS test scenarios (Song et al. 2024b), and very limited studies
have reported any relevant definitions, metrics, approaches, and insights in this
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topic, our proof of concept provides insights of and recommendations for the realism
of synthetic critical scenarios and a basis for future studies.
In summary, our study makes four major contributions:

1. We propose two metrics to evaluate the realism of synthetic critical scenarios,
namely attribute distribution and Euclidean distance. The metrics provide both
macroscopic and microscopic views of the realism of a synthetic critical scenario
set.

2. As aproof of concept, we apply our metrics to measure how synthetic collision
scenarios by DeepScenario are aligned with realistic AV collisions in DMV
California, revealing insights from practical perspectives.

3. We observe existing shortcomings and possible future improvements, serving
as guidelines for recording realistic scenarios, and generating and evaluating
synthetic critical scenarios. The guidelines are general and not specific to the
datasets in this study.

4. We include human assessment in the loop to provide further insights and
guidelines for evaluating the realism of synthetic critical scenarios on top of the
empirical evaluation.

The rest of the article is organised as follows: in Sect. 2, we review the relevant
literature to this study. We formulate our research approach in Sect. 3, and present
the results and analysis in Sect. 4. In Sect. 5, we discuss our findings and the validity
of the study. Lastly, we conclude the article in Sect. 6.

2 Related work

In general, there are few pieces of research providing a rigorous and quantified
methodology for establishing the realism of a critical scenario dataset. In the
remainder of this section, we review the only exceptions we are aware of.
Subsequently, we review the available datasets that could be the subject of such a
realism study.

2.1 Scenario realism evaluation

To the best of our knowledge, very limited studies have been dedicated to evaluating
the realism of synthetically generated scenarios for testing AVs/ADS, although
realism has been considered an essential quality for test scenarios (Song et al.
2024b). Consequently, no standard definition or metrics for evaluating realism are
established. Below we present several studies that are reported on validating the
simulation model and test adequacy metrics for AVs, and contrast to our study.
Stocco et al. (2023a) compared the performance of AV in simulated and real-
world environments and revealed gaps and transferability of testing in those two
different environments. Riedmaier et al. (2021a, 2021b) conducted a literature
survey on verification, validation, and uncertainty quantification methods for
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simulation models across various application domains, including autonomous
driving, and have developed a unified framework to assess the errors and
uncertainties of these models. In a similar study, (Reisgys et al. 2021) present
a method to compute the simulation errors by comparing the system response
quantities in simulation and proving ground tests. The authors consider a
simulation model valid if the simulation error is still within the tolerance
boundary based on the proving ground tests. Neurohr et al. (2024) also designed
a method to compare the similarity between natural driving data recorded in
the real world and its simulation counterparts to validate the simulation model.
Besides, Sargent (Sargent 2010) discussed, more broadly, different approaches
(paradigms and techniques) to assess model validity and recommended a
procedure for it. While those studies commonly involve real-world driving data
and their simulation counterparts to analyse the errors in the simulation model,
we specifically focus on (system-level) critical driving scenarios and evaluate
the similarities between synthetic and realistic AV critical scenarios based on
selected features, such as weather, lighting, and roadway conditions.

Braun et al. (2023) reviewed and presented several proximity measures for
scenario similarity. For example, comparing the similarity of time series data
such as trajectory of two scenarios, or the sequence of maneuvers involved. Other
than that, distance is used to quantify the similarity of two scenarios based on
selected features, which is an important measure we use in this study, as presented
in Sect. 3.1.2. In general, a low distance means a high similarity and vice versa.
Two identical scenarios should have a distance of zero (Braun et al. 2023). Neelofar
and Aleti (2024) presented several adequacy metrics to analyse the coverage and
diversity of test scenarios for Al-powered systems. Among those metrics, Euclidean
distance is used to measure the distance between two scenarios and the diversity
of test scenarios for testing AVs. In another study, Yan et al. (2023) designed
NeuralNDE, a deep learning-based framework that produces real-world driving
environments in simulation with statistical realism, which means the road events and
driving behaviours follow a real-world distribution. The inconsistency in statistical
difference in, e.g., relative distance and speed between vehicles, or how and when
vehicles yield to the others in roundabouts, between simulation and the real world,
will result in simulation gaps and unreliability for testing. Therefore, real-world
distribution of road events and conditions are significant to incorporate, which is
another metric that we use in this study, as described in Sect. 3.1.1.

Several studies discussed realism, yet they were mostly articulating the need to
evaluating the realism of test scenarios. To exemplify, Sun et al. in their study for
scenario-based testing of AVs, eliminated scenarios with unavoidable collisions in
the initial state as they consider such scenarios meaningless for testing (Sun et al.
2021). Although unavoidable collisions can still be relevant for testing AVs/ADS,
the study does provide a potential dimension to consider for assessing the realism
of scenarios. In order to explore and identify realistic test scenarios for AVs, Abbas
et al. proposed to analyse the dynamic feasibility of given maneuvers and the
composition of different maneuvers (Abbas et al. 2017), Tenbrock et al. incorporated
the probability of a scenario (Tenbrock et al. 2021), and Neurohr et al. articulated
the need for validating simulation environments (Neurohr et al. 2020).
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2.2 Realistic critical scenarios

There are a number of public reports on various types of incidents involving
autonomous vehicles, both at the national (federal) level (National Transportation
Safety Board 2018; National Highway Traffic Safety Administration 2023) and
the state level (California Department of Motor Vehicles 2022, 2023). To date,
the disengagement and collision reports produced by the California Department
of Motor Vehicles (CA-DMV) are the most comprehensive available reports that
were subject to extensive research. Several studies have used CA-DMV collision
reports (Favaro et al. 2017; Petrovic et al. 2020; Pokorny and Hgye 2022) to analyse
the distribution of attributes such as vehicle maneuvers and collision types. In
contrast, we compare such distribution with a synthetic collision set to evaluate its
realism. The CA-DMYV reports have also been compiled into public datasets after
augmentation with public data, such as open street maps (Sinha et al. 2021). The
CA-DMYV Collision Reports (California Department of Motor Vehicles 2023) served
as one of the two main sources of data for our research. We use the raw reports
rather than the compiled dataset to carefully scrutinise the raw data and prepare it in
a suitable format that matches the information provided by the synthetic scenarios.

2.3 Synthetic critical scenarios

Although real-world critical scenarios are significant sources for realistic testing of
ADS, collecting such scenarios requires deploying AVs on real-world traffic, which
is risky and expensive (Song et al. 2024b). Therefore, simulation environment is
commonly used for its accessibility and efficiency. In addition, regular road traffic
is non-critical most of the time (Klischat and Althoff 2019), collecting a fair amount
of critical scenarios, such as AV collisions, in real world is time-consuming. Thus,
such scenarios are not available on a large scale yet. In comparison, synthetic
critical scenario identification is more efficient by constructing various weather,
road conditions, and interactions between AV and other road users in simulation.
We should find structured methods for these two techniques to be combined and
complemented in an iterative manner (Song et al. 2024b, a).

Identifying critical scenarios and automating scenario generation are among
the two most prominent challenges in the domain of testing AVs (Lou et al. 2022).
Often, road accident reports have been a source for designing critical scenarios, as
evidenced by recent interviews with domain experts (Lou et al. 2022). Also, there
has been sizeable research using search algorithms to explore synthetic critical
scenarios in simulation. Below, we review some relevant studies to give an overview
of them.

Several studies have used accident reports to reproduce synthetic scenarios for
testing AVs/ADS (Gambi et al. 2019b, 2022, 2019a; Xinxin et al. 2020). Gambi
et al. (2019b, 2019a) reproduced synthetic scenarios from police crash reports
using natural language processing. In another study, Gambi et al. (2022) used
accident sketches to extract road information, collision type, and vehicle dynamics
to reconstruct the scenario for simulation. Xinxin et al. (2020) developed a toolkit
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to extract scenarios from accident videos and store them in a scenario library for
testing AVs. Although using real traffic accident data can improve realism, such data
do not usually involve AVs and need to be extracted with appropriate techniques.

Several studies have used search-based approaches to optimise the generation
of critical scenarios in simulation (Abdessalem et al. 2018a, b; Araujo et al. 2020;
Nejati et al. 2023; Li et al. 2020; Luo et al. 2021; Calo et al. 2020; Abdessalem
et al. 2018a, b; Birchler et al. 2023b, a). Abdessalem et al. and Calo et al. used
multi-objective search algorithms, such as NSGA-II, to generate critical scenarios
for testing ADS (Abdessalem et al. 2018a, b; Calo et al. 2020). In a similar study,
Abdessalem et al. developed a novel algorithm, FITEST, extending MOSA, and
evaluated it on generating unsafe scenarios for industrial ADS (Abdessalem et al.
2018a, b). Li et al. designed a framework for finding safety violations using a genetic
algorithm (Li et al. 2020). Luo et al. developed an approach for generating critical
scenarios with requirement violations using NSGA-III. The requirement violations
cover both safety and comfort perspectives (Luo et al. 2021). While most studies
focused on approaches and tool chains for identifying synthetic critical scenarios,
DeepScenario (Lu et al. 2023a, b) used different optimisation strategies to identify
critical scenarios for Apollo ADS in the SVL simulator. DeepScenario opened the
resulting dataset (i.e., 1 050 collision scenarios and a total of 33 530 scenarios) in
structured specifications.

3 Research approach

Our approach to measuring realism comprises four steps (S1-S4), as illustrated in
Fig. 1. S1 selects appropriate metrics to evaluate the realism of critical scenarios.
S2 prepares the datasets for subsequent evaluation. S3 evaluates the datasets from
S2 using three analyses based on the metrics from S1, two use attribute distribution
and one uses Euclidean distance. Lastly, in S4, we close the loop by involving
the stakeholders involved in dataset collection (including scenario generation and
selection) to assess our evaluation results and provide feedback. Below we explain
each and every step, using our proof of concept example to illustrate them.

’ S1: Metric Selection H S2: Data Preparation H S3: Data Evaluation H S4: Results Assessment

1: Attribute Distributiol+ D1: DMV California E1l: Single-M1 ‘ M Human Evaluation ‘

M2: Euclidean Distance

D2: DeepScenario ‘ E2: Multi-M1 ‘

Fig. 1 An overview of our research approach with four steps (S1-S4) performed in the given order.
S1 selects two evaluation metrics (M1 and M2) for realism. S2 prepares two datasets (D1 and D2) for
evaluation. S3 evaluates the datasets from S2 using three analysis (E1, E2, and E3) based on the metrics
from S1. Lastly, in S4, we interview the stakeholders of DeepScenario (D2) to assess our evaluation
results from S3
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3.1 Evaluation metric selection

As we discuss earlier in Sect. 2, there has been no specific metrics defined to
evaluate the realism of critical scenarios. Thus, we need to select appropriate
metrics that can give us some perspectives or insights to understand the realism of a
synthetic critical scenario set. As a first proposal, we select two evaluation metrics
for realism, namely attribute distribution and Euclidean distance.

3.1.1 Attribute distribution

To evaluate the realism from a macroscopic view, attribute distribution represents
the distribution of an attribute or combination of attributes of a critical scenario set.
Further, it enables causal analysis of critical attributes for collisions by comparing
the prior and posterior distributions, when available and eliminating confounders
(Pear]l 2009). When a causal relation is established (e.g., for crashes or near-crash
scenarios), then the comparison of distribution of causal attributes will precisely
measure how effective synthetic scenarios cover what is causal for a critical
situation. Any discrepancies give a potential indication of lack of sufficient coverage
in such cases. Although statistical analysis on attribute distribution often requires a
fair and sufficiently large dataset, we apply this to our two proof of concept datasets
and explore what we can learn from such analysis, and what needs to be improved if
we fail to perform such analysis.

3.1.2 Euclidean distance

To evaluate the realism from a microscopic view, Euclidean distance (Huang
et al. 2020) refers to the distance between two critical scenarios measured in a
vectorised space. In general, the larger the distance between two scenarios is, the
bigger differences they possess in their attributes (Braun et al. 2023). The distance
measures how close, or similar, a synthetic critical scenario is to the real-world
critical scenarios, further indicating the realism of it. Further, the distance needs
to be associated with a specific evaluation criteria, be it a reasonably set threshold
for the distance from a synthetic critical scenario to its closest real-world critical
scenario, or comparing the same distance to the mean or maximum distance between
all real-world critical scenarios, depending on the actual analysis.

Different from the attribute distribution, which measures the distribution of an
attribute or combination of attributes in a scenario set, Euclidean distance measures
the distance between two scenarios. In other words, attribute distribution reveals
the similarity between two scenario sets in terms of scenario distribution for a
specific attribute, e.g., weather, while Euclidean distance indicates the similarity of
two concrete scenarios based on their distance in a vectorizied space. Given that,
two similar or identical scenarios (with zero or low Euclidean distance) may still
have very different distributions in two datasets, leading to discrepancies in attribute
distribution.
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3.2 Data preparation

This step involves processing the datasets to identify the scenarios of interest, e.g.,
by defining what level of automation is needed and what kind of incidents need to be
represented. The level of automation is selected by the manufacturers when reporting
a collision, which could be either autonomous driving or conventional driving. We
filter out scenarios in conventional driving mode where AV was deactivated from
the autonomous driving mode. In other words, the vehicle was manually driven
by a human driver and the collision was not related to the ADS. Subsequently, we
map the scenarios into the attributes of interest, i.e., by defining the attributes and
coding the dataset or using learning techniques to decide on the features and the
corresponding labels of the scenarios. We select five attributes in this study, which
are all categorical, describing environmental characteristics of the scenarios. We
then map the scenarios into a vector space to calculate the Euclidean distances
among them. Below we illustrate this step and its ingredients on our datasets.

For our proof of concept, we use the AV collision set from DMV California, and
a synthetic AV collision set from DeepScenario. Ideally, for a fair comparison, we
would like the compared datasets to be collected under similar conditions, i.e., using
the same ADS, and considering the same weather and road conditions. Due to the
unavailability of two perfectly matching datasets, we selected two public datasets
collected in the same geographical area. For each set, we filter the data, extract
relevant attributes, and vectorise them to prepare for the subsequent evaluation.

3.2.1 DMV California

AV manufacturers in California are required to submit a collision report to DMV
California within 10 days of an incident (California Department of Motor Vehicles
2023). Until the start of the current study (i.e., June 2, 2023), there have been 603
AV collision reports submitted to DMV California. We download this dataset and
Fig. 2 provides a visualised representation of the preparation on this dataset.

1. Data Filtering. We exclude 67 collision reports before April 2018 due to their
limited readability and information. Although AV collision reports existed since
2014, they are scanned photocopies where quality is low, and readability of the
text in the reports is limited. For reports after 2016 and before April 2018, the
scanning quality is improved, but the collision still heavily relies on a qualitative
description, where quality of the description and information contained is entirely
dependent on the manufacturers.

Further, we exclude 254 collision reports after April 2018 due to the use of
conventional (non-autonomous driving) mode at the time of the collision. Since
we specifically focus on AV collisions in this study, we exclude reports with the
conventional mode selected where AV was deactivated from the autonomous
driving mode. As a result, we retain 282 collision reports for subsequent
evaluation.
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PyPDF2 One-hot Encoding

DMV California (603) Data Filtering (282) % Attribute Extraction Pﬂ Data Vectorization

1: Limited readability (67){ ’ Al: Weather ‘

C2: Non-AD mode (254)

’ A2: Lighting ‘

l

’ A3: Roadway surface ‘

’ A4: Roadway condition

’ A5: Collison type %

Fig.2 An overview of preparation of DMV California data. Initially, we access 603 collision reports
from DMV California. We filter the data with two criteria (67 for C1 and 254 for C2) and obtain 282
collision reports. Non-AD mode in C2 refers to the non-autonomous driving mode in a collision. After
that, five relevant attributes (A1-AS5) are extracted from the remaining data using the PyPDF2 Python
library, and are vectorised using the One-hot encoding approach

2. Attribute Extraction. We use PyPDF?2 library (PyPI 2022) to extract relevant
attributes for collision reports since 2019 as they are standard PDF files. For
reports before 2019, we manually extract the attributes as they are scanned
photocopies and auto-extraction is significantly more complicated. As provided
in the supplementary material (Song et al. 2024c¢), a report contains three main
sections, i.e., manufacturer information, accident information, and accident
details. Specifically, accident details contain a qualitative summary of the
collision and a structured table. We focus on the table and extract five attributes
that are available and can be extracted from both datasets, i.e., weather, lighting,
roadway surface, roadway conditions, and collision type.

After that, we manually compensate 30 collision reports with a missing field.
Among them, 13 collision reports have no value for the roadway surface attribute.
We carefully inspect each collision report, and use Dry for clear and Wet for
raining weather. There are another 17 collision reports with empty roadway
conditions, we use No unusual conditions for them after inspecting the accident
details description in the reports, where no specific roadway condition or related
information is identified. Instead of eliminating those collisions for missing one
attribute, we want to keep more data in our analysis to get a better view of the
collisions and subsequent evaluation and analysis of realism with DeepScenario.

Additionally, we manually update six collision reports with multi-value fields
and 46 with two collision types. Two reports have both Cloudy and Raining for
weather and are revised to Raining. Four reports have two roadway conditions
selected. An example is cruise_032123.pdf with Obstruction on roadway and
Other. In that case, Other is removed as it does not provide useful information.
46 reports have two collision types, one for each vehicle involved. We carefully
inspect the accident details description and select the type that fits most
appropriately. Among them, 32 reports are clearly Rear end where one vehicle’s
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front hit the other vehicle’s rear end, but have Head on for one and Rear end for
the other vehicle. Similarly, nine reports have Broadside where one vehicle’s
front hit the other’s side, but was selected as Head on and Broadside. We use
the same principle to revise the remaining five reports where the manufacturer
selected a different collision type for each vehicle involved. Although having
multiple values for one field might be justified in certain situations, this is rarely
used (18.44%) and it adds substantial complexity to the analysis. For example,
it is not straightforward to determine the similarity between multi-valued and
single-valued fields.

3. Data Vectorisation. Finally, we use the one-hot encoding approach (Zhou 2020) to
vectorise the selected data for subsequent comparison and analysis. Specifically,
we create a binary vector with the length of the number of options for each
attribute in the collision reports. Then, we mapped 1 into the corresponding bit
of the vector for each selected option in the report, and O for the remaining bits.
As a result, each data (scenario) contains five binary vectors for five attributes,
and in total 32 bits in length.

3.2.2 DeepScenario

DeepScenario is an open driving scenario dataset for testing ADS and contains 33
530 synthetic driving scenarios (Lu et al. 2023a, b). DeepScenario used the Apollo
ADS to navigate the autonomous vehicle in the SVL simulator (Lu et al. 2023a,
c). Further, it used three strategies (i.e., random, greedy search, and reinforcement
learning) to optimise critical scenarios with respect to different reward functions
(i.e., time to collision, distance to obstacles, and jerk) on various roads, weather,
and behaviours on the map of San Francisco. In other words, DeepScenario explores
different roads, weather, and vehicle behaviours in simulation, and searches for
driving scenarios where the AV collide with other vehicles, pedestrians, or road
infrastructures. Among the scenarios, there are 1,050 collision scenarios where the
AV collides with other vehicles, pedestrians, or objects. As presented in Fig. 3, we
employ the same preparation as for DMV California data, with an additional step of
2D reconstruction to extract the collision type for DeepScenario.

1. Attribute Extraction. We extract weather and lighting conditions from the
directory name of the scenario. DeepScenario organises scenario description
files in a multi-level directory as the summary box below. In this example, the
directory contains the generation strategy (7l — reinforcement learning), reward
function (dto — distance to object), road (roadl), weather (sunny), time of the
day (day), and name (0_scenario_0.deepscenario) of the scenario description
file. DeepScenario used two weather conditions (i.e., sunny and rainy), which
correspond to Clear and Raining in the DMV California dataset. Lighting is
derived from the time of day (i.e., 8:00 for day and 20:00 for night) and is mapped
to Daylight and Dark—Street lights respectively.
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[ matplotlib ] [ Ehapely ]
’ 2D Reconstruction ‘ et DG
’ DeepScenario (1050) Q}{ Attribute Extraction %a Data Filtering (1049) [%  Data Vectorization
’ A1: Weather ‘ MCI; Uncertain collisions (1)‘

’ A2: Lighting ‘

l

’ A3: Roadway surface ‘

l

’ A4: Roadway condition

l

’ AS5: Collison type %

Fig.3 An overview of preparation of DeepScenario data. Initially, we access 1050 collision scenarios
from DeepScenario. We extract five relevant attributes (A1-A5) as for DMV California using scenario
specification and a 2D reconstruction (developed using matplotlib and shapely Python libraries). One
scenario is filtered due to uncertainties (C1) identified in the 2D reconstruction, and we obtain 1049
collision scenarios. Finally, selected scenarios and their extracted attributes are vectorised using the One-
hot encoding approach

../rl_based-strategy/reward-dto/road1-sunny_day-scenarios/0_scenario_0
.deepscenario

We then derive roadway surface and condition based on the weather and
generation configurations. As DeepScenario set the roadway surface according
to the weather, we use Dry for sunny and Wet for rainy weather to align with the
DMV California data. Besides, since DeepScenario did not employ any unusual
roadway conditions such as construction or holes on the roadway, we use No
unusual conditions for roadway condition in DeepScenario.

2. 2D Reconstruction. We extract collision type from the 2D reconstruction of
the scenarios. Since LG has stopped its server cloud and development for SVL
simulator in 2022 (The SVL Simulator team 2020), extraction of collision type
for DeepScenario scenarios relies on the scenario description files. Although
open-source projects such as SORA-SVL (Huai 2022) are developed as a local
cloud built for the SVL simulator, they do not support the SVL version used by
DeepScenario (i.e., 2021.1).

A scenario description file in DeepScenario is an XML-based specification
including the environment (e.g., city, date and time, and weather), entities (e.g.,
vehicles, pedestrians), and a storyboard (dynamic parameters of the entities)
for a period of three seconds. The storyboard contains six timestamps collected
per 0.5 seconds and each timestamp contains the position, velocity, angular
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4 An example of 2D reconstruction of a scenario description file. Each timestamp is a subplot in the

figure, and we only plot entities (in blue) that are within the ego vehicle’s (in red) field of interest —20 ms
from the ego vehicle—for collision type extraction. Each entity is represented as a rectangle (bounding
box) with a green arrow (orientation), and a text of its name and speed in km/h separated by a comma
sign. In this example, the collision is avoided in timestamp 6, but the space between Ego0 and NPC2
vehicles is not evidently visible due to the scaling issue

velocity, GPS, and orientation of each entity. We use matplotlib and shapely
libraries to reconstruct a 2D plot of each timestamp and visualise the bounding
box, orientation, and speed of each entity, see Fig. 4, to extract collision type.

We automatically extract collision type for 816 scenarios using 2D
reconstruction and Python scripts we develop. Specifically, DeepScenario already
labeled collision scenarios with a collision type of Pedestrian, Obstacle, and
npc_vehicle. While Pedestrian and Obstacle can be easily mapped to Vehicle/
pedestrian and Hit object from DMV California, npc_vehicle refers to collision
with other vehicles and needs to be further categorised to align with DMV
California. We use bounding boxes of the entities to identify the intersection
between the AV and the colliding vehicle, and determine the collision type based
on which side of the vehicles involved most in the intersection area. We adopt
the taxonomy from the California Collision Manual (California collision manual
2003) and NHTSA terms (United States Department of Transportation 2023),
e.g., a vehicle’s front side colliding with another vehicle’s rear side is a Rear end
collision type.

We manually extract collision type for 234 remaining scenarios by visually
examining the 2D reconstruction. Since DeepScenario only collected vehicle
dynamic parameters at 6 timestamps (starting at time 0) and for every 0.5 s, there
are scenarios where a collision occurs between two timestamps or after the last
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timestamp. Thus, we identify 122 scenarios with no intersection between the AV
and surrounding vehicles, such as in Fig. 4. Further, we identify 112 scenarios
where two sides of a vehicle are affected equally or similarly (i.e., less than
or equal to 30% of differences) in the intersection area; thus, requiring further
analysis to identify collision type precisely. We inspect the 2D reconstruction of
those scenarios and use the same taxonomies from California (California collision
manual 2003) and NHTSA (United States Department of Transportation 2023) to
extract collision type. To the best of our knowledge, there is no boundary value
to separate collision types based on vehicle’s collision area, thus; we examine the
data and employ an approximation of 30%.

As our automated approach works for the overwhelming majority (77.71%) of
the scenarios, we could leave out the remaining scenarios without threatening the
validity of our study. Still, we opt for an additional manual round to maximise the
use of the data for further evaluation and analysis.

3. Data Filtering. We exclude one collision scenario as we find no clear collision
from the 2D reconstruction. During the manual extraction as presented in the
previous step, i.e., step 2, we identify one scenario where a collision is unlikely
to happen, given the relative orientation, speed, and position between the AV and
other entities, thus; is filtered due to the uncertainties. As a result, we select 1049
scenarios for subsequent evaluation and analysis.

4. Data Vectorisation. We vectorise selected data and their attributes using the same
principle (i.e., one-hot encoding (Zhou 2020)) for DMV California dataset as
described in Sect. 3.2.1.

3.3 Data evaluation

The outcome of the previous steps sets the scene for applying the evaluation metrics
to measure the similarity between the two datasets. This can be done at different
levels: the distribution metrics can be measured at the level of individual attributes,
or the combination of attributes. Subsequently, significant differences can be
further scrutinised to find out whether they concern attributes that are causal for the
criticality of the real scenarios. Causal analysis (Pearl 2009) is both computation-
and data-intensive and among others, requires information about the prior
distribution of the attributes. When there is insufficient resources for causal analysis,
we can only report discrepancies which are only established at the correlation level,
i.e., under- or over-representation of certain attribute values with respect to the
real critical scenarios. Moreover, since the data and the extracted attributes may be
highly-dimensional, dimensionality reduction techniques can be used to focus the
analysis of distance metrics. We instantiate these sub-steps below with respect to our
two datasets.

As we described in Sect. 3.1, we define two metrics, namely, attribute distribution
and Euclidean distance, to evaluate the realism of synthetic critical scenarios. In
the empirical evaluation, we use those metrics to analyse how well DeepScenario
generates similar collision scenarios as recorded by DMV California. In our
evaluation, we focus on the five attributes that we extract from the two datasets,
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Fig.5 An overview of the data evaluation. In single-attribute distribution analysis, we compare the
distribution of five attributes (A1-AS5) between the two datasets. In multi-attribute distribution analysis,
we compare the distribution of three combinations of attributes (CA1-CA3). Lastly, for Euclidean
distance, we first perform PCA (Principle Component Analysis) to reduce the dimensions of the data,
and perform distance analysis using three evaluation criteria (EC1-EC3)

including weather, lighting, roadway surface, roadway condition, and collision type.
As explained in Sect. 3.2, those attributes are used as they are extractable from both
datasets.

3.3.1 Single-attribute distribution

We first evaluate the distribution of each attribute independently to observe
and analyse the differences between DeepScenario and DMV California data,
as shown in Fig. 5. Specifically for weather and lighting, we access their prior
(actual) distribution in California to perform a causal analysis on those attributes
for AV collisions. As the prior distributions for other selected attributes are
not available, performing causal analysis on them is infeasible. Lastly, based
on the results and analysis, we formulate our observations and propose our
recommendations to improve the realism or future evaluation of realism for
critical scenarios for testing AVs and ADS.

3.3.2 Multi-attribute distribution

We then evaluate the distribution of multiple attributes together, which
compares the distributions of combinations of multiple attributes between the
two datasets to get further insights. Through previous analysis in Sect. 3.3.1, we
observe roadway surface is strongly correlated to weather, and a large number
of scenarios in DMV California and all in DeepScenario have no unusual
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roadway conditions. Thus, those two attributes are excluded from the analysis,
and we focus on the combinations of the remaining attributes in this evaluation,
including (1) weather and collision type, (2) lighting and collision type, and
(3) weather, lighting, and collision type. The combinations reveal differences
between the two datasets when considering several attributes collectively.
Similar to the single-attribute distribution, we formulate our observations and
propose our recommendations to improve the realism or future evaluation of
realism for critical scenarios for testing AVs and ADS, based on the results and
analysis.

3.3.3 Euclidean distance

Lastly, we evaluate the Euclidean distance from DeepScenario data to DMV
California data to analyse their similarity. Unlike the distribution analysis in
Sect. 3.3.1 and 3.3.2, we focus on unique scenarios since repetitive scenarios
do not contribute to the distance analysis. We start with Principal Component
Analysis (PCA) (Farjo et al. 2013) to reduce the dimensions of the two datasets.
After that, we perform two iterations of distance-based analysis on the data.
Finally, we formulate our observations and propose our recommendations based
on the results and analysis.

1. Dimension Reduction. In general, PCA is a statistical procedure to extract
and project information from high-dimensional data into a lower-dimensional
space to ease visualisation and analysis (Farjo et al. 2013). While PCA is not
strictly needed for processing relatively low-dimensional data, it improves
the computational efficiency and applicability of our methodology for future
studies (with high-dimensional data). We perform a Scree test (Brown 2009)
to analyse the amount of variance in the original data that is captured by each
target dimension. The number, until which the captured variance descends
precipitously, but afterward levels out, is the optimal number of target dimensions
for PCA (Brown 2009; Bryant et al. 1995). Then, we use PCA from sklearn
library to transform the original data into the target number of dimensions.

2. Distance-based Analysis. We anchor our analysis on the concept of Euclidean
distance. In the first iteration, we compare the distance from DeepScenario data
to DMV California data with distance between DMV California data. In the
second iteration, we cluster DeepScenario and DMV California data to analyse
their categorisation.

(a) In the first iteration, we compute the maximum distance for a DeepScenario
data to find its nearest DMV California neighbour, and consider the scenario
similar to DMV California data if the distance is smaller than the maximum
distance for a DMV California data to find the nearest neighbour of its own
kind. Alternatively, we compute the mean distance for a DeepScenario data
to all DMV California data, and consider the scenario similar to DMV
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California data if the distance is smaller than the maximum mean distance
for a DMV California data to the rest data of its own kind.

(b) In the second iteration, we use K-means (Li et al. 2018; Hauer et al. 2020)
to cluster the two datasets, which is still based on the measurement of
the distances between the data. To begin with, we employ the Elbow
method (Humaira and Rasyidah 2018; Liu and Deng 2021; Cui 2020)
to determine the optimal K (i.e., the number of clusters) for K-means.
The Elbow method iterates different K, fits the data, and computes the
distortions (i.e., the average distance from other data entries in each cluster
to the centroid). The K until which the distortion decreases significantly,
but afterward, flattens out, is the optimal value for K. Then, we cluster the
two datasets into K clusters, and any DeepScenario data that are grouped
into a cluster with DMV California data are considered similar scenarios.

3.4 Results assessment

This step involves presenting the results to stakeholders and discussing the
background to the observed discrepancies in order to confirm or adjust the
observations and draw an action plan for the future. The objective is not to perform
a systematic and rigorous assessment of our findings, but rather to gather views and
thoughts on them from relevant stakeholders available to us. We interviewed the first
author of DeepScenario, as they led the generation of the DeepScenario dataset and
was available to participate our interview. We consciously used a semi-structured
interview to give the interviewee freedom and flexibility to discuss the validity and
usefulness of our findings.

From our proof of concept, we observed discrepancies with respect to the
synthetic critical scenarios generated by DeepScenario, as well as some missing
background information with respect to the DMV California set. We discussed these
observations, with the first author of DeepScenario, in an online semi-structured
interview to assess the results and analysis we obtain from the empirical evaluation,
as described in Sect. 3.3. Before the interview, we presented the design, results,
observations, and our analysis to the interviewee. During the interview, we had an
open discussion to collect further insights, feedback, and suggestions from them.
The interview process was flexible where we walked through the findings of this
study and asked the interviewee’s thoughts and feedback on them. Based on their
responses, we continued the discussion to explore additional insights with the
interviewee. After that, we analysed the response and presented relevant parts as
assessments of our results. The interview was semi-structured and primarily aimed
to check the outcomes and discuss the feedback from the DeepScenario main author
as they are aware of the background and the design decisions for this dataset and its
generation process.
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4 Results and analysis

In line with the evaluation design in Sect. 3.3, we present results and analysis to
each evaluation analysis, which concerns primarily RQ1 — how realistic are
synthetic critical scenarios from realistic critical scenarios. Also, we provide our
observations and recommendations based on the results to address RQ2 — guidelines
for closing reality gaps in synthetic critical scenarios. The data and scripts we use
for evaluation are available on Zenodo (Song et al. 2024c). Although the quantitative
results are specific to the analysed datasets, we reflect on the quantitative results to
find qualitative observations and recommendations that are generaliseable to other
analyses of realism in the future.

4.1 Single attribute distribution

As introduced in Sect. 3.3.1, we focus on analysing distributions of five relevant
attributes independently in single attribute evaluation, including weather, lighting,
roadway surface, roadway conditions, and collision type.

4.1.1 Evaluation results

1. Weather. As shown in Table 1, weather distribution in DeepScenario differs
significantly from DMV California. DeepScenario has two weather conditions
almost evenly distributed, i.e., 50.81% Clear and 49.19% Raining. In contrast,
DMV California has the majority (86.53%) Clear, a certain amount of Cloudy
and Raining, and several Fog/visibility. As DeepScenario used only two weather
conditions, it is unsurprising that other weather recorded in DMV California such
as Cloudy and Fog/visibility have no occurrence in its distribution. In addition,
DeepScenario employed each weather uniformly in its generation process,

Table 1 Weather distribution for DMV California and DeepScenario

Weather DMV California DeepScenario
Population (282) Distribution Population Distribution
(1049)

Clear 244 86.53% 533 50.81%
Cloudy 21 7.45% - -

Raining 14 4.97% 516 49.19%
Fog/visibility 3 1.06% - -

Snowing 0 0 - -

Wind 0 0 - -

Other* 0 0 - -

Sign ‘—" means a weather is not used and thus not applicable. Other* refers to weather not listed above,
for example, hail, dust, or smoke, as defined in California Collision Manual (California collision manual
2003)
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resulting in an even distribution, and have more frequent collisions in the Raining
weather than in DMV California.

We also visit the actual weather distribution in California (i.e., 18.63% days
with precipitation for San Francisco (WorldClimate.com 2023) and 11.78% for
San Diego (WorldClimate.com 2023) in 2023) to analyse potential causal effects
of weather on AV collisions. The actual distribution suggests no evident impact
of rain on collisions for DMV California data as only 4.97% collisions were
reported in this weather. However, that is subject to the test arrangement of the
manufacturers—how AV manufacturers arranged their tests in different weather,
which is unavailable presently.

Furthermore, we conduct a one-way Chi-square test (spicy: scipy.stats.
chisquare 2023) with the distribution of Raining and non-Raining weather in
DMV California data against the actual distribution in San Francisco to determine
the association between them. The result (i.e., statistic = 35.340035, pvalue =
2.76882e—09) indicates that their difference is significant. To identify the causal
effect of rain on AV collisions, we need more statistics on test arrangement, traffic
density, driving behaviours, and so on in each weather to perform further causal
inference (Pearl 2009).

2. Lighting. Table 2 presents the distribution of lighting for DMV California and
DeepScenario. Similar to weather, DeepScenario has each lighting condition
equally explored; we see a fairly close distribution for Daylight and Dark—Street
lights. In reality, DMV California recorded the same lighting as the two most
common lighting conditions in AV collisions, but also experienced a few Dusk—
Dawn and Dark—No street lights. As one may inevitably consider other lighting
than Daylight would impair the visibility of AVs and other road users and expect
more collisions, their distribution are much lower than Daylight, and raises our
concerns about the test arrangement for DMV California and simulation quality
for DeepScenario. In other words, if most testing happened during the day, more
collisions would be reported in Daylight condition for DMV California; if the
simulator could not faithfully represent the lighting and potential impacts on AV
sensors, they would not contribute to collisions to a real extent in DeepScenario.

Table2 Lighting distribution for DMV California and DeepScenario

Lighting DMV California DeepScenario
Population (282) Distribution Population Distribution
(1049)

Daylight 177 62.77% 529 50.43%
Dark—Street lights 92 32.62% 520 49.57%
Dusk-Dawn 12 4.26% - -

Dark—No street lights 1 0.36% - -
Dark—Street lights not 0 0 - -

functioning

Sign ‘-’ means a lighting condition is not used and thus not applicable
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Table 3 Roadway surface distribution for DMV California and DeepScenario

Roadway Surface DMV California DeepScenario

Population (282) Distribution Population (1049) Distribution
Dry 265 93.97% 533 50.81%
Wet 17 6.03% 516 49.19%
Snowy-Icy 0 0 - -
Slippery 0 0 - -

Slippery refers to Slippery (muddy, oily, etc.) in full name. Sign ‘—’ means a roadway surface is not used
and thus not applicable

Like the analysis for weather, we also visit the day length in San
Francisco (timeanddate 2023) and obtain an average of 12:12 (hh:mm) Daylight,
0:56 Dusk—Dawn, and 10:52 night (Dark—Street lights) in 2022, corresponds to
a distribution of 50.83%, 3.89%, and 45.28% respectively. The actual distribution
of lighting conditions suggests no distinctive causal effects of inclement lighting
such as Dark—Street lights on collisions. Besides, the Chi-square test (i.e., statistic
= 17.745138, pvalue = 0.000140) uncovers that the observed distribution of
lighting condition in DMV California does not follow the actual distribution in
San Francisco and the difference is significant. It may be due to uneven tests in
different lighting conditions, or poor lighting does not cause more collisions,
which needs further investigation.

Roadway surface. As we introduced earlier in Sect. 3.2.2, DeepScenario sets the
wetness of the roadway based on weather, therefore; the distribution of roadway
surface is the same as weather, as shown in Table 3. DMV California encountered
a predominant majority of Dry and a few Wer roadway surfaces, which is close
to the distribution of weather in Table 1. We conduct a Pearson correlation
coefficient analysis of weather and roadway surface for DMV California, and the
result (i.e., p = 0.536414) indicates a strong positive correlation between them. In

Table 4 Roadway condition distribution for DMV California and DeepScenario

Roadway Conditions DMV California DeepScenario

Population (282) Distribution ~ Population (1049)  Distribution

No unusual conditions 273 96.81% 1049 100%
Obstruction on roadway 3 1.06% - -
Construction — Repair zone 2 0.71% - -

Reduced roadway width 2 0.71% - -

Holes, deep rut 2 0.71% - —

Loose material on roadway 0 0 - -

Flooded 0 0 - -

Other* 0 0 - -

Sign ‘—’ means a roadway condition is not used and thus not applicable. Others* refer to roadway

conditions not listed above and include such as oil slick on the road
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a further analysis, we discover that 98.51% (264/268) of Clear, Cloudy, and Fog/
visibility weather correspond to a Dry roadway surface, and 92.86% (i.e., 13/14)
of Raining weather has a Wer roadway surface.

4. Roadway condition. We focus on DMV California data for roadway condition
as DeepScenario set No unusual conditions for scenario generation. Despite that
DMV California also ran into No unusual conditions for the vast majority (i.e.,
96.81%) of the collisions, they experienced a few Obstructions on roadway,
Construction—Repair zone, Reduced roadway width, and Holes, deep rut, as we
can see from Table 4. As one may consider unusual roadway conditions would
remarkably challenge AVs in their driving tasks and result in more collisions,
such situations are rare in comparison to usual roadway conditions (Klischat and
Althoff 2019; Song et al. 2023; Yan et al. 2023), and the resulting distribution still
depends on the testing arrangement of different AV manufacturers. For example,
if manufacturers only test their AVs under No unusual roadway conditions, then
collisions are expected exclusively in this roadway condition, and there will be
no distribution of collisions for other roadway conditions. However, that does
not necessarily mean No unusual roadway conditions lead to more collisions for
AVs than other roadway conditions. To understand the causal relations between
roadway conditions and AV collisions, we need to know how manufacturers have
arranged their tests under each different roadway condition. Therefore, a causal
relation cannot be established with current information available.

5. Collision type. DeepScenario and DMV California share the same top three
collision type (i.e., Rear end, Side swipe, and Broadside), of which the
cumulative total constitutes 86.37% and 89.36% of all collisions respectively.
Apart from that, there are 11 Other collisions in DMV California, but none
for DeepScenario, as in Table 5. That is because DeepScenario employed

Table 5 Collision type distribution for DMV California and DeepScenario

Collision type DMV California DeepScenario

Population (282)  Distribution Population (1049)  Distribution
Rear end 179 63.48% 434 41.37%
Side swipe 49 17.38% 363 34.60%
Broadside 24 8.51% 109 10.39%
Other* 11 3.90% 0 0
Head-on 10 3.55% 9 0.86%
Hit object 8 2.84% 28 2.67%
Vehicle/pedestrian 1 0.36% 106 10.11%
Overturned 0 0 0 0

Other* refers to collision types not listed herein and include such as a vehicle involved with a bicycle,
train, animal, falling passengers from a vehicle, a bicycle involved with a pedestrian, etc
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only pedestrians and vehicles in scenario generation, and no other road
users such as bicycles, trains, and animals. In addition, DeepScenario
experienced a significantly higher ratio of vehicle/pedestrian collisions
than DMV California. That calls for further scrutiny as to how different
pedestrian behaviour models were simulated in DeepScenario and how testing
with pedestrians was arranged in DMV California data. In a subsequent
analysis, we sorted collision types for the two datasets in descending order
and computed the distribution gaps of adjacent types. We obtained a sum
of 0.63 and a mean of 0.09 difference for DMV California. In comparison,
DeepScenario has a sum of 0.41 and a mean of 0.06 difference, which implies
DeepScenario has on average a lower difference of distribution for different
collision types and generated collision of each type more uniformly.

4.1.2 Observations and recommendations

Given the attribute distribution, as presented in Sect. 4.1.1, we formulate two
observations (starting with O), derive three recommendations (starting with R), and
receive three comments (starting with C) from the first author of DeepScenario.

O1 — DeepScenario used a strict subset of realistic parameter values; this may be
due to the design of the critical scenario generation and/or due to the limited
capabilities of the simulator to reflect the effect of a number of parameters.

02 — There are discrepancies in attribute distribution in DeepScenario compared
to the real scenarios in DMV California. Some of these may be due to test
arrangement in DMV California and others may be due to design decisions
in DeepScenario, partly due to the quality of simulations.

1. Ol is evident in the evaluation, where substantial realistic parameter values
are not used in DeepScenario. Especially, DeepScenario used only two weather
and lighting conditions, and two roadway surfaces, which left out a variety of
realistic values for weather and lighting conditions, roadway surface, and roadway
conditions. Consequently, more potential AV collision scenarios with realistic
conditions as evidenced by DMV California are not explored in DeepScenario.

02 is highly likely yet requires further investigation to better understand the
ground truth. As per our analysis, there is no clear picture of the actual distribution
of all attributes in California, when and under which conditions the manufacturers
have tested their AVs on public roads, and how well real-world attributes and their
impacts are represented in simulation in DeepScenario. Thus, even though there
is a significant difference between the two datasets, no simple conclusions can be
made on causality given the information we have. Nevertheless, our observations
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from the single attribute evaluation reveal the discrepancies in distribution and
draw attention to some considerations of scenario realism.

R1 — Include a more diverse range of realistic parameter values in synthetic sce-
nario exploration, such as snowy weather, icy roadway surface, and unusual
roadway conditions.

R1.1 Use the distribution of parameters in realistic critical scenarios to inform
the distribution of parameters in synthetic simulations.

R1.2 If causal analysis is performed on realistic data, a similar representation
of causal parameters should be prioritised in simulation.

R2 — Evaluate the quality of the simulation before using it for testing AVs.

R2.1 — Evaluate the feasibility of simulating real-world parameters, e.g.,
different weather.

R2.2 — Evaluate the representation and effects of real-world parameters in
simulation.

R2.3 — Decouple scenario generation from a single simulator and use a range
of simulators with different capabilities to explore more diverse critical
scenarios.

R3 — Include more contextual information for real critical scenario datasets on
the prior distribution of parameters to enable a causal analysis of AV collision
scenarios. These include statistical information about planned field tests and
traffic situations during field tests that were not recorded as critical.

2. Inresponse to O1, we recommend R1 to include more realistic parameter values
in the exploration of synthetic collision scenarios to improve the diversity of
them in comparing to realistic AV collisions. This recommendation is inclusive,
meaning parameters should be considered from all realistic perspectives instead
of attributes of interest in this study. While layered frameworks for systematic
parameter selection in AV testing are developed and reported (Bagschik et al.
2018; Scholtes et al. 2021), a comprehensive list of parameter values and the
selection of them for different ADS with different functions, implementations,
or ODDs are still lacking (Song et al. 2024b).

Also, it is significant to evaluate the quality of simulation (R2), regarding
whether desired parameters are feasible to simulate (R2.1) and the realism of
their representations and effects on other entities (R2.2). For a concrete example,
how rainy weather in varying degrees is represented in simulation and how road
surface, tire friction, and sensor performance are impacted shall be quantified.
Particularly, studies already show substantial gaps between simulation and real-
world testing (Stocco et al. 2023a, b; Beringhoff et al. 2022; Bédrgman et al. 2024;
Wimmer et al. 2019), and the latest EU regulation for type approval of AVs
also mandates evaluating simulation if a simulator is used in testing (European
Commission 2022; Song et al. 2024b). Additionally, we recommend incorporating
several simulators with different capabilities to explore more diverse critical
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scenarios (R2.3). For example, one simulator is not feasible to simulate a
particular weather; thus, not able to explore critical scenarios under this weather
condition, but other simulators are feasible. In this case, one could use several
simulators to explore different conditions they are capable of representing.
Further, if we have several simulators simulating the same conditions but getting
different results, for example, in one simulator the AV collides with other road
users but not in other simulators, that would indicate a discrepancy in simulation
quality and call for further investigation of whether that particular simulator is
representing the conditions faithfully or not. Using multiple simulators enables
us to explore more and diverse critical scenarios and getting more insights into
the critical scenarios identified.

Overall, our recommendations emphasize incorporating realistic parameters
in exploring critical test scenarios for AVs, and ensuring they are faithfully
simulated in the simulator. In addition, we also recommend R3 to explore and
include the prior distribution of parameters used in real-world critical scenarios to
perform a causal analysis of them on AV collisions and identify causal parameters
that are significant for AV collisions. That, in turn, encourages organisations such
as different AV manufacturers to collect and share more contextual information
such as the test arrangement, which would be rather significant for evaluating,
analysing, and understanding the realism of synthetic scenarios.

C1 — Scenario simulation and optimisation are computationally heavy, which
limits the feasibility of incorporating more realistic parameters and values in
DeepScenario.

C2 — SVL simulator supports limited parameter values from DMV Califor-
nia. An example is snowy weather and unusual roadway conditions such as
construction or holes.

C3 — Reality gap in the SVL simulator is noticeable from different perspectives,
e.g., weather.

3. Generally, the first author of DeepScenario confirms our results. As C1 sounds,
optimisation and simulation of critical scenarios are computational resources-
and time-consuming, which limited them in incorporating more real-world
parameters. That limitation was exacerbated by the SVL simulator in which
certain parameters were not supported (C2). For example, snowy and windy
weather. Although a road damage level that changes road friction can be set, many
unusual roadway conditions such as construction or holes were infeasible in SVL
when DeepScenario was created. Lastly, the reality gap (C3) was evident in the
SVL simulator for, e.g., the effect of weight on vehicle dynamics, where a vehicle
could be thrown into the air abnormally after a collision. Another example is that
the weather stayed constantly the same and an update instruction would change
it immediately rather than incrementally over time. Those comments supply
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Table 6 Distribution of weather recorded in collisions in conjunction with collision types

Collision type Weather
Clear Cloudy Raining Fog/visibility

Rear end 54.26%/21.74% 6.38%/— 2.13%/19.64% 0.71%/-
Side swipe 16.31%/17.83% 0.36%/— 0.36%/16.78% 0.36%/-
Broadside 7.45%15.15% 0.36%/- 0/5.24% 0/~

Other* 3.90%/0 o/~ 0/0 0/~

Head-on 3.19%/0.29% o/~ 0.36%/0.57% 0/~

Hit object 1.06%/1.53% 0.36%/—- 1.42%/1.14% 0/~
Vehicle/pedestrian 0.36%/4.29% 0/~ 0/5.82% 0/~
Overturned 0/0 0/~ 0/0 0/~

Each cell contains distributions from DMV California and DeepScenario, and is separated by a /* sign.
Columns headed Cloudy and Fog/visibility are in italics as they are not applicable for DeepScenario,
thus; their distributions are annotated as ‘—’. The distributions in bold imply only one dataset has a
distribution

additional insights into the realism of scenarios in DeepScenario, and also reveal
specific issues or limitations that impact the realism of the generated scenarios.

4.2 Multiple attribute distribution

As introduced in Sect. 3.2.2, we focus on analysing distribution of three
combinations of attributes in multiple attribute evaluation, including (1) weather
and collision type, (2) lighting and collision type, (3) weather, lighting, and collision
type.

4.2.1 Evaluation results

1. Weather and collision type. Table 6 presents the distribution of weather in
conjunction with collision type. Herein, we only focus on four weather that are
recorded by DMV California or used by DeepScenario. Similar to the weather
and collision type analysis from Sect. 4.1.1, DMV California has most collisions
reported in Clear weather, thus; collision types are further decomposed under this
weather. In contrast, DeepScenario has each collision type more evenly distributed
in Clear and Raining weather, and has remarkably more collisions in Raining
weather. As highlighted in Table 6, DeepScenario did not generate Other type
collisions in Clear weather, which have been reported in DMV California, but
DeepScenario was able to identify Broadside and Vehicle/pedestrian collisions
in Raining weather, which have not been reported in DMV California yet.

2. Lighting and collision type. The distribution of lighting in conjunction with
collision type somewhat mirrors the separate distribution of weather and collision
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Table 7 Distribution of lighting recorded in collisions in conjunction with collision types

Collision type Lighting
Daylight Dusk-Dawn Dark—Street lights Dark—No
street lights

Rear end 43.97%/20.11% 3.19%/- 15.96%/21.26% 0.36%/—
Side swipe 9.22%/18.11% 1.06%/- 7.09%/16.49% 0/~
Broadside 4.97%/4.67% 0/~ 3.55%15.72% 0/~
Other* 1.77%/0 0/~ 2.13%/0 0/~
Head-on 1.42%/0.57% 0/~ 2.13%/0.29% 0/~

Hit object 1.06%/1.53% 0/~ 1.77%/1.14% 0/~
Vehicle/pedestrian 0.36%/5.43% 0/~ 0/4.67% 0/~
Overturned 0/0 0/~ 0/0 0/~

Each cell contains distributions from DMV California and DeepScenario, and is separated by a ‘/°
sign. Columns headed Dusk—-Dawn and Dark—No street lights are italics as they are not applicable for
DeepScenario, thus; their distributions are annotated as ‘—’. The distributions in bold imply only one
dataset has a distribution

Table 8 Distribution of collision types in conjunction with weather and lighting

Collision type Weather-Lighting

Clear-Daylight Clear-Dark* Raining-Daylight Raining-Dark*
Rear end 38.30%/10.58% 13.83%/11.15% 1.06%/9.53% 1.06%/10.11%
Side swipe 8.51%/9.91% 6.74%17.91% 0/8.20% 0.36%/8.58%
Broadside 4.61%/2.0% 2.84%/3.15% 0/2.67% 0.71%/2.57%
Other* 1.77%10 2.13%/0 0/0 0/0
Head-on 1.06%/0.19% 2.13%/0.10% 0.36%/0.38% 0/0.19%
Hit object 0.36%/0.86% 0.71%/0.67% 0.36%/0.67% 1.06%/0.48%
Vehicle/pedestrian 0.36%/2.19% 0/2.10% 0/3.24% 0/2.57%
Overturned 0/0 0/0 0/0 0/0

Each cell contains distributions from DMV California and DeepScenario, and is separated by a /> sign.
Due to space issues, Clear-Dark* for ‘Clear-Dark—Street lights’, and Raining-Dark* for ‘Raining-Dark—
Street lights’. The distributions in bold imply only one dataset has a distribution

type. Particularly, DMV California recorded collisions predominantly in Daylight,
while DeepScenario has a more uniform distribution for each collision type
in Daylight and Dark—Street lights lighting, as shown in Table 7. Other type
collisions are reported both in Daylight and Dark—Street lights in DMV California
but none in DeepScenario. Nevertheless, Vehicle/pedestrian collisions, which
have not been reported in Dark—Street lights in DMV California as of now, are
identified in a considerable ratio (4.67%) in DeepScenario.
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Weather, lighting, and collision type. In a higher-order multi-attribute analysis, we
obtain a more meticulous distribution of collision type in conjunction with weather
and lighting, as shown in Table 8. We exclude weather and lighting conditions
that do not apply to DeepScenario or are not reported in DMV California as they
do not provide additional insights to our analysis. DMV California features most
collisions recorded in Clear-Daylight, followed by Clear-Dark—Street lights, and
very few in Raining weather. In comparison, DeepScenario has each collision type
more uniformly distributed. As one may expect inclement weather (e.g., Raining)
and lighting conditions (e.g., Dark—Street lights) may increase the chance of
collisions, we see no distinctive distribution that deviates Raining-Dark—Street
lights from the others. Especially, DMV California has 54.97% of collisions
reported in Clear weather and Daylight lighting. As we presented in Sect. 4.1.1,
the actual distribution of weather and lighting conditions suggests inclement
weather and lighting do not associate with collisions to a significant degree. That,
however, should be further analysed with how each different condition is tested
by the manufacturers. Lastly, except for Other type collisions that are recorded
in Clear weather for DMV California but none in DeepScenario, DeepScenario
identified six collision types under specific weather or lighting conditions that
are not reported in DMV California. Among them, five are in Raining weather,
and three are Vehicle/pedestrian type.

4.2.2 Observations and recommendations

Same as in Sect. 4.1, we present our observations, recommendations, and comments
from the DeepScenario author for multiple attribute evaluation.

O1 - DMV California recorded most collisions, i.e., 54.97%, in clear weather
and daylight conditions, thus; inclement weather and lighting do not hold a
higher distribution for AV collisions. Yet, further statistics for such as test
arrangement and traffic densities are needed to understand the causal effect
of inclement weather and lighting conditions on AV collisions.

02 — DeepScenario identified new collisions that have not been reported to DMV
California such as vehicle/pedestrian collisions in raining weather, while miss-
ing out on some that existed in DMV California, e.g., other type collisions
in clear weather as in Table 8.

1.

We do not observe a significantly higher distribution of collisions in inclement
weather (e.g., Raining) and lighting (e.g., Dusk—Dawn, Dark —Street lights) in
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DMV California. Instead, most collisions from DMV California were recorded in
Clear weather and Daylight lighting. Therefore, one observation is that they do
not contribute to more collisions for the datasets in this study (O1). However, that
should be further analysed with additional statistics such as test arrangement by
the manufacturers, traffic densities, and interactions between AV and other road
users in DMV California data. Therefore, a causal relation cannot be established.

DeepScenario identified new collision scenarios that have not been reported
to DMV California (O2), which clearly shows it is effective to use synthetic
scenario exploration to find new critical scenarios for testing AVs/ADS. However,
DeepScenario did not use all realistic parameter values from DMV California and
missed out on certain collisions that have been reported to DMV California, so
synthetic scenario exploration should complement, rather than replace, real-world
testing or realistic scenarios in the current stage (Song et al. 2024b; Tang et al.
2023; Knauss et al. 2017).

R1 — Identify and use critical parameters for exploring synthetic critical scenar-
ios.

R1.1 — Explore the prior distributions of parameters that are relevant for com-
posing critical scenarios (as illustrated by steps 1-3 in Figure 6), perform
causal analysis with the observed distributions in collision scenarios (see
steps 4-5 in Figure 6), and identify which parameters are critical for AV
collisions.

R1.2 — Ensure the feasibility of simulating those critical parameters from R1.1,
and validate their representation and effects in simulation environment
to ensure a faithful simulation and scenario realism.

R2 - Use realism measurement in a feedback loop between the real and syn-
thetic scenarios: when new types of collisions are found in synthetic scenarios,
use field tests to verify the criticality of these parameter values and adjust
the parameter distribution. This will lead to an updated measure for real-
ism and a virtuous loop for more covering tests both in real- and simulated
environments.

2. Even though Ol is a specific observation for this study and is subject to data
acquisition and size of data for analysis, it is still important to identify parameters
that are critical for causing AV collisions (R1.1) and how realistic they are
represented in simulation for critical scenario exploration (R1.2) to reduce reality
gaps for simulation environments, as articulated in several studies (Stocco et al.
2023a; Beringhoff et al. 2022; Knauss et al. 2017).

Moreover, a feedback loop needs to be developed for integrating real-world
testing and simulation testing of AVs concerning guidelines for field testing with
synthetically generated scenarios. Specifically, simulation can be used to explore
unknown critical test scenarios (e.g., collisions or other hazardous scenarios) and
improve scenario coverage of real-world testing. Correspondingly, real-world
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testing can give useful feedback to improve the parameters and distribution of
values in simulation testing and reduce the reality gaps (R2). Overall, they should
complement each other and be combined effectively for testing AVs (Daza et al.
2022; Zhong et al. 2021; UNECE 2023).

C1 — Evaluation and analysis of the realism of synthetically generated scenarios
are significant for effective testing of AVs/ADS.

C2 — DeepScenario should be maintained continuously, enabling more contribu-
tors.

3. The first author of DeepScenario confirms our analysis, observations, and
recommendations. Particularly, they believe that evaluation and analysis of
synthetically generated scenarios from realistic driving scenarios is extremely
important (C1) as realism is an essential quality for test scenarios, and suggest
every study in this field to incorporate more realistic parameter values, AD
systems, and related tools to increase realism of test scenarios for AVs/ADS.
Besides, they also articulate testing AVs and critical scenario exploration
as continuous work, meaning working on and enhancing them gradually and
iteratively over time.

DeepScenario, as an open driving scenario dataset for testing AVs/ADS, needs
to be maintained constantly and enables more subscribers/contributors to refine
it (C2). Several proposals were discussed, including to 1) transfer the scenarios
into OpenScenario format, which is a fairly standard format for scenarios that
are commonly used (Tenbrock et al. 2021; Erdogan et al. 2018; Xinxin et al.
2020; Tang et al. 2023), 2) switch to the Carla simulator, which is a robust and
common simulation tool for ADS (Dosovitskiy et al. 2017; Tang et al. 2023; Ji
et al. 2021; Kang et al. 2019; Rosique et al. 2019), 3) update the scenarios to use
more accurate specifications, for such as GPS positions, 4) continuously expand
the scenario set by exploring other maps, realistic weather, roadway conditions,
road infrastructures, and interactions with various road users, 5) keep open source
the tool and scenario set. With that, DeepScenario is expected to attract more
researchers or practitioners to use and improve the test scenarios.

4.3 Euclidean distance

As described in Sect. 3.3.3, we evaluate DeepScenario data with DMV California
data based on the measurement of Euclidean distance. We use PCA to reduce the
dimensions of the vectorised data. Then, we use distance criteria and K-means
approach to evaluate the data. We employ unique data entries in the two datasets,
i.e., 40 for DMV California and 24 for DeepScenario.
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4.3.1 Evaluation results

1. Dimension Reduction. As described in Sect. 3.3.3, we perform a Scree test (Brown
2009) and find 6 the optimal number of target dimensions, which can capture
96.08% of the variance in the original data (i.e., the union of unique data entries
in DeepScenario and DMV California). Then, we use PCA from sklearn library
and transform the vectorised data of DeepScenario and DMV California from 32
into 6 dimensions for subsequent evaluation.

2. Distance-based analysis.

(a) In the first iteration, we discover all DeepScenario data are similar to DMV
California data as they are close in distance comparison.

(i) 17 out of 24 unique DeepScenario scenarios find an identical copy
in DMV California data. In addition, the maximum distance for a
DeepScenario data to find its nearest DMV California neighbour
(1.07) is much smaller than the maximum distance for a DMV
California data to find the nearest neighbour of its own kind (1.40).
Similarly, the mean distance for a DeepScenario data to find its
nearest DMV California neighbour (0.17) is also much smaller than
the mean distance for a DMV California data to find the nearest
neighbour of its own kind (0.68), with the same standard deviation
(0.3). That indicates, while DMV California data is more scattered
in distance in general, DeepScenario data appear to stick around
the DMV California data and are easier to find a DMV California
neighbour than DMV California data.

(ii)) The mean distance for a DeepScenario data to all DMV California
data (maximum is 2.23) is smaller than the maximum mean distance
(2.54) for a DMV California data to the rest data of its own kind.
That implies every DeepScenario data has a shorter average distance
to DMV California data than the mean distance of the farthest DMV
California data to rest data in its own group. We conclude that
every DeepScenario data is still within the boundary of the DMV
California data.

(b) In the second iteration, we first use the Elbow method and find 6 the
optimal number of clusters for our data. Then, we use K-means from
the sklearn library to cluster the two datasets. The results indicate all six
clusters are a mixture of data from both datasets, not a single cluster that
contains DeepScenario data exclusively. The clustering does not separate
DeepScenario and DMV California data, given the attributes we extract.
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4.3.2 Observations and recommendations

Based on the distance evaluation in Sect. 4.3.1, we formulate our observations and
recommendations. Except for confirming our findings and giving general feedback,
the first author of DeepScenario supplies no specific insights or concerns for this
part.

O1 — DeepScenario identifies new collision scenarios that are not recorded by
DMV California, but are still considered similar to DMV California data
according to the distance analysis.

02 — The current datasets provide limited attributes that are extractable, espe-
cially DeepScenario due to no functioning simulators available. Given more
relevant attributes are available or extractable such as vehicle maneuvers,
we expect a further evaluation of the realism of DeepScenario and more
sophisticated comparison of the two datasets to be feasible.

1. Further elaborating on the distribution discrepancies presented in Sects. 4.1
and 4.2, the distance evaluation discloses that DeepScenario contains different
scenarios from DMV California, but they are not overly different from scenarios
reported in DMV California from a distance perspective (O1). As reported
in the distance-based analysis in Sect. 4.3.1, DeepScenario data is close to
DMYV California data in a vectorized space, and the Euclidean distance from
DeepScenario data to DMV California data are generally lower than the Euclidean
distances within DMV California data. Therefore, they are considered not
significantly different from DMV California data from a distance point of view.
Also, we refer to Sect. 3.1.2 again, discrepancies in attribute distribution does not
necessarily mean scenarios contained in the two datasets are different.

We also observe that the current datasets we analyse contain limited attributes
that are available or extractable, thus not allowing more thorough evaluations
(02). As we mentioned in Sect. 3, DMV California data contains additional
information such as Accident details — Description, Movement Proceeding
Collision, and Other Associated Factors, which can be useful to reveal further
insights, but are not included in this study due to the limitations of DeepScenario
and SVL simulator. Particularly, the Accident details— Description describes such
as the location, traffic situation, cause of the collision, trajectories, maneuvers, and
post-accident actions for each involved entity. Movement Proceeding Collision
has 18 options (e.g., Stopped, Making right turn, Backing, Changing lanes,
and Parking) and clearly indicates the movement and behaviour of each entity.
Similarly, Other Associated Factors has 12 options (e.g., Vision obscurement,
Entering/Leaving ramp) and gives additional information about a collision.
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R1 — Develop guidelines of which attributes and in which formats should a
scenario contain for future scenario exploration and collection.

R2 — Include more attributes pertaining to the dynamics and kinematics of vehi-
cles, their relative positions and maneuvers in future scenario evaluation and
analyses.

2. In response to O2, we recommend developing guidelines for defining future
critical scenarios regarding which attributes (e.g., weather and lighting) are
required, their formats (e.g., categorical or numeric forms), and collection
frequency (R1). More specifically, how each attribute and attribute value are
collected, and in which format and precision each attribute is defined, are also
important to understand. For example, DeepScenario used three floating points’
precision for the GPS coordinates of each entity, which does not form an accurate
location. Otherwise, the GPS coordinates can be mapped back to a map of San
Francisco and obtain such as the vehicle trajectory, location (e.g., an intersection),
and some maneuvers (e.g., lane switching) involved in a scenario even without a
simulator.

Furthermore, we recommend evaluating and analysing the realism of synthetic
scenarios using more attributes from R1, to close the reality gap for synthetically
generated scenarios (R2). Given that DeepScenario and DMV California can
provide accurate information regarding those attributes, more perspectives of the
scenarios can be compared for realism.

5 Discussion

Going beyond the factual results and analysis in Sect. 4, we discuss our findings,
limitations, and future work concerning our research goals and questions as well as
their implications. Besides, we present threats to the validity of our study and how
we have mitigated them appropriately.

5.1 Findings and implications

Realism is an essential quality to evaluate not only to critical scenarios, but all
relevant test scenarios in general (Song et al. 2024b). However, it is not sufficiently
addressed in the current research. In this study, we propose a methodology using two
metrics, i.e., attribute distribution and Euclidean distance, to evaluate the realism
of synthetic critical scenarios. As a proof of concept, we employ two AV collision
sets, including a synthetic one from DeepScenario and a realistic one from DMV
California for empirical evaluation of our methodology. We evaluate the similarity
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Fig.6 Process for continuous evaluation and improvement of realism for critical scenarios, based on the
findings of our pilot study. The process consists of several steps (in rectangles and annotated with 1-5)
and output (in cylindrical) from each step

of DeepScenario data by analysing the attribute distribution with and distance to
DMV California data. After the evaluation, we assess our results by interviewing
the DeepScenario author. Based on our findings from the pilot study, we propose
a continuous process, depicted in Fig. 6. In this process, we propose to use our
methodology for a continuous analysis of realism and using the findings, potentially
after a causal analysis, to address the gaps by updating the fitness functions for
the synthetic scenarios and guidelines for field testing and data collection for real
scenarios.

In addition to this general recommendation, we analyse the specific findings to
answer our research questions below.

1. Regarding RQ1.1, we observe the attribute distribution between the two datasets
differs significantly. While DMV California had substantial AV collisions in
Clear weather, Daylight lighting, Dry roadway surface, and No unusual roadway
conditions, DeepScenario explored and identified collision scenarios evenly in
each selected condition. For example, DMV California has 86.53% of collision
scenarios recorded in Clear weather while DeepScenario has 50.81%. However,
that does not necessarily mean the scenarios contained in the two datasets are
different. In the distance-based analysis, we take each individual scenario from
DeepScenario and find whether a similar scenario appears close by in DMV
California. The result reveals that the two datasets, although possessing several
different scenarios, are still similar. Overall, attribute distribution and Euclidean
distance are considered effective metrics to quantify similarities between two
critical scenario sets, further indicating the realism of the synthetic critical
scenarios.
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As we reported in Sect. 4.1 and 4.2, we find no evident impact of inclement
weather or lighting on AV collisions; it requires, however, further investigation for
RQ1.2 to identify which attributes are critical for causing more collisions for AVs
in the real world, and subsequently, RQ1.3—how the identified casual parameters
from real world are reflected in synthetic collision scenarios. Therefore, we are
unable to answer these research questions in this study, given the datasets and
contextual information we have, e.g., test arrangements for DMV California data.

In summary, for RQ1, we conclude, based on our methodology and results,
that DeepScenario is similar and exposes no big differences to realistic collisions,
although it does identify new scenarios not recorded in DMV California. However,
that depends on how different AV manufacturers have arranged their tests. Also,
as we discussed in Sect. 3.3, the current study evaluates limited attributes while
other attributes of interest are not available or not feasible to extract.

2. For RQ2, we observe that more realistic attributes and values should be
incorporated in the exploration of synthetic critical scenarios, and the quality of
simulation should be properly evaluated with respect to real-world testing before
using it for testing AVs/ADS.

Specifically, DeepScenario used only a small subset of realistic weather,
lighting, roadway surface, and roadway conditions. To close the reality gaps
in RQ2.1, more realistic attributes should be used and their representation, as
well as effects in simulation, should be evaluated. The author of DeepScenario
confirms such gaps, and it corroborates the findings by Song et al. (2024b)
that systematic selection of parameters and faithful representation of them in
simulation is required for critical scenario exploration. We need to validate and
ensure at least attributes that are critical for collisions (as concerned in RQ1.1)
are precisely simulated.

As for RQ2.2, field testing needs to be compensated by simulation testing
as they identify new critical scenarios that might be rare in real-world traffic.
Correspondingly, field testing can provide useful guidance for improving the
realism of simulation and synthetic scenarios as well. Therefore, we propose
developing a feedback control loop for real-world and simulation testing and
combining them in an effective way for testing AVs/ADS. While such a concept
has been studied and reported (Stocco et al. 2023a, b), how the two testing
approaches should be divided or combined effectively in AV testing is not entirely
evident yet.

Overall, this is the first step towards a data-centric evaluation of synthetic critical
scenarios. We observe that a decisive outcome of our analysis is hampered by the fact
that (1) the two datasets used are arguably too small to be statistically significant,
(2) some contextual information such as test arrangement and simulation quality are
unavailable, and (3) prior distributions of some attributes such as roadway surface
and conditions are unavailable. Those limitations have hindered us from performing
a comprehensive evaluation of the two datasets and exposed some threats to our
study.

Nevertheless, we maximise the findings of this study by (1) selecting the best
datasets available to us, (2) using all extractable attributes in our evaluation, and

@ Springer



Automated Software Engineering (2025) 32:37 Page 350f44 37

(3) deriving general recommendations and guidelines for evaluating and improving
the realism of synthetic critical scenarios. Given realism is an essential quality
for test scenarios for AVs/ADS, and limited approaches, empirical evaluation,
and insights have been reported so far, our study sheds some light on this urgent
topic and serves as a basis for future studies by making four main contributions, as
already described in Sect. 1:

1. A methodology for evaluating the realism of synthetic critical scenarios from
realistic critical scenarios, using two metrics—attribute distribution and
Euclidean distance. The metrics provide both macroscopic and microscopic views
of the realism of a synthetic critical scenario set.

2. An empirical evaluation of how well a synthetic scenario set DeepScenario
generates realistic AV collisions as recorded in DMV California, revealing
findings and insights from empirical perspectives.

3. Observing existing shortcomings and possible future improvements, serving
as guidelines for recording realistic scenarios, and generating and evaluating
synthetic critical scenarios. The recommendations are general and not specific
to the datasets used in this study.

4. We include human assessment in the loop to provide further insights and
guidelines for evaluating the realism of synthetic critical scenarios on top of the
empirical evaluation. The assessment strengthens the need to evaluate the realism
of synthetic scenarios for testing AVs/ADS and the findings of our study.

5.2 Limitations

Although our methodology is defined to be generic and is meant to be applicable
to various datasets, generalising our results particularly concerning our proof of
concept is prone to some limitations (as also mentioned in Sect. 4 and 5.1).

In our proof of concept, one limitation concerns the different ADS and ODDs
involved in the two datasets. As introduced earlier in Sect. 3, DMV California
collects collision reports from several manufacturers, such as Waymo and Cruise,
on different roads and weather in California. In contrast, DeepScenario uses Apollo
ADS and four roads in San Francisco. Ideally, we want both (synthetic and realistic)
datasets generated by the same system, in the same places, under the same weather
and road conditions, and so on, to get a fair comparison between them. Otherwise,
the discrepancies in collisions between the two datasets may simply be attributed to
the different ADS and ODDs involved. That, however, is very challenging for the
time being due to the unavailability of two perfectly matching datasets and thus;
we acknowledge that as an inherent limitation for the current study. As a proof of
concept, we use the two selected datasets (from DeepScenario and DMV California),
which are the closest and publicly available datasets that we can find, to analyse
how well DeepScenario (with the combination of Apollo ADS and SVL simulator)
can produce similar critical scenarios as recorded in DMV California. This has
been useful in revealing some insights and deriving general recommendations about
realism from them.
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Another limitation stems from the small size of the two datasets, further; raising
general concerns about the usefulness of comparing their similarities. A small real-
world dataset, e.g.,, DMV California data, owns the risk of not being statistically
significant or not reflecting the ground truth distribution of real-world accidents.
Further, the risks potentially lead to uncertainties and lack of confidence in findings
we obtain from comparing DeepScenario from DMV California. For example, our
distribution analysis reveals DeepScenario has a significantly different attribute
distribution from DMV California, as described in Sect. 4, suggesting collisions take
place to a different extent in DeepScenario from DMV California, under the same
conditions (e.g., weather, road conditions). However, different results may emerge
if a larger number of realistic AV collisions were collected in DMV California and
expose a different distribution of attributes. Therefore, the evaluation analysis and
some observations, as reported in Sect. 4, are restricted to the selected datasets only.
Still, we derive general recommendations for improving the realism of synthetic
critical scenarios.

Lastly, the limitation also lies in that only few attributes are extractable from the
two selected datasets and their prior distribution in the real world is lacking. As
discussed earlier in Sect. 4.3.2, there are several relevant attributes defined in DMV
California data, such as movement proceeding collision and other associated factors,
not used, due to inability to extract them from DeepScenario. When more attributes
are included in the evaluation, we may obtain different results and analysis on the
similarity between the selected datasets. Additionally, more contextual information
such as test arrangements and prior distribution of the extractable attributes could
enable a causal analysis and identify critical attributes for AV collisions. Those,
unfortunately, are not available at the moment and thus; causal relations cannot be
established.

5.3 Threats to validity

As our goal is to devise a methodology and demonstrate a proof of concept for
evaluating the realism of synthetic collision scenarios from realistic AV collisions,
we strive to maximise the construct and internal validity throughout the study.
Several limitations are discussed in Sect. 5.2, herein we focus on the validity of
this study, especially regarding possible threats and their impacts as well as how we
mitigate them.

e Construct validity refers to how well the constructs under study are
measured (Verdecchia et al. 2023; Lago et al. 2024). Our primary focus in this
study is the realism of synthetic critical scenarios for testing AVs/ADS.

One threat to construct validity is how the concept of realism is defined
and measured for synthetic scenarios. As discussed in Sect. 2, no standard
definitions or metrics are reported. To mitigate that, we define realism as the
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degree of similarity of synthetic scenarios to realistic scenarios, and propose
two evaluation metrics to analyse realism from macroscopic and microscopic
perspectives. Also, we employ various analyses based on the metrics to capture
a better view of realism, including single- and multiple-attribute distribution
analysis, and distance-based analysis via several criteria and K-means
categorisation.

Another threat comes from the datasets and attributes we select for evaluation,
especially concerning how well they can be used to measure realism. To mitigate
that, we use the best datasets that are available to us and use all extractable
attributes in our analysis. DeepScenario is a fairly large scenario set generated
using various optimisation strategies, weather, road users, and user behaviours
on a map of San Francisco. DeepScenario is open and provides a structured
specification for each scenario. DMV California collects and releases all real
AV collisions, in a standard template, for 10 years in California. Although they
are not big currently, the two datasets represent synthetic and realistic critical
scenario sets from the same geographical area, and are live projects that are
continuously maintained and updated.

e Internal validity refers to the validity of the results internal to the
study (Verdecchia et al. 2023; Lago et al. 2024), e.g., how we have analysed the
data and derived the findings and conclusions.

One threat to internal validity is the small size of the two datasets for attribute
distribution analysis. We acknowledge that as an inherent limitation as critical
scenarios like collisions are rare, and contextual information such as how
manufacturers have arranged their tests in different conditions is missing. As a
preliminary step attempt to evaluate realism, we explore different perspectives
and maximise insights or current limitations we can learn from them. Also,
we manually compensate data with missing field(s) and maximise the data for
evaluation. Despite the evaluation results being subject to the datasets used, the
recommendations are somewhat general, and provide a basis and considerations
for future studies.

Another threat concerns about the limited attributes we use for evaluation. To
mitigate that, we analyse both datasets and use all extractable attributes in our
evaluation. As described in Sect. 3.2.1 and 4.3.2, some additional attributes are
available from DMV California data, but are not used due to the limitations in
DeepScenarios and SVL simulator. We expect new results may emerge when
more attributes are used, and we do not claim the evaluation results are general.
Nevertheless, this study reveals some empirical observations by evaluating the
two datasets, and provides general recommendations for future studies.

5.4 Future work

Given the current limitations and validity concerns for the proof of concept, we
identify several tasks, ideas, and potential research directions for future work.
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One future work is to update the datasets to incorporate recently reported AV
collision scenarios, and explore new datasets and attributes available for evaluation
and analysis of realism. We should also synchronize with the DeepScenario team to
work out additional attributes, or explore new datasets with more relevant attributes.
Also, to develop guidelines on what attributes need to be collected for AVs/ADS test
scenarios.

Another idea for future studies is to consider a different strategy to evaluate
realism of synthetic scenarios. Instead of comparing everything in a driving scenario
as a whole, we could separate the ADS behaviour, surrounding environment, and
interactions between ADS and other road users into different parts. For example, we
may only focus on evaluating how well a simulation environment represents regular
road traffic and surrounding environment, i.e., human traffic without ADS, and
evaluating whether simulation reflects ADS behaviour in the real world in another
study. The formal one would only require real-world dataset for human traffic, which
are already available at a large scale, such as SHRP2 NDS (Papazikou et al. 2019)
and GIDAS (Otte et al. 2012) datasets.

The evaluation of realism can significantly impact the selection of test scenarios
for ADS based on their realism. It would be important to study how realism
evaluation can be used for test scenario selection for ADS, and further; improve
the test efficiency and effectiveness. This suggests the testing should only focus on
realistic and relevant scenarios for the ADS under test. Another research direction
would be studying how realism impacts the scenario coverage. Although critical
scenario identification is, in general, expected to identify critical scenarios and
improve the overall test coverage effectively, the realism of such scenarios remains a
fundamental issue to understand.

6 Conclusion

Critical scenarios are significant and have received considerable attention in
research for testing AVs/ADS. Such scenarios are identified and analyzed to
determine where, how, and why AVs fail, providing insights into their safety
performance and helping to prevent similar incidents in the future. While extensive
studies of critical scenario identification for testing AVs/ADS have been reported,
the realism of resulting scenarios is rarely explored and their relevance to testing
is unclear. In this study, we propose two metrics and evaluate the similarity of a
synthetic collision set DeepScenario from realistic AV collisions collected by DMV
California. We analyse the distribution of different attributes such as weather and
lighting conditions, and observe a significant difference between the two datasets.
We also perform a distance-based analysis and find that DeepScenario generates
new collision scenarios that have not been recorded by DMV California, but they
are still similar to the scenarios from DMV California from a distance perspective.
Based on the evaluation results, we derive several recommendations for improving
the realism of synthetic critical scenarios, concentrating on including more realistic
parameter values (e.g., snowy weather) for critical scenario exploration, evaluating
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the quality of simulation, performing causal analysis on attributes for AV collisions,
and developing a guideline of which attributes to collect for test scenarios. The
study is limited by the data and attributes available, and we expect future studies to
incorporate more attributes to evaluate the realism of synthetic critical scenarios.
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