

Curriculum Vitae – Avner Bensoussan

avner.bensoussan@kcl.ac.uk

Google Scholar: Avner Bensoussan

LinkedIn: Avner Bensoussan

ORCID: 0009-0007-3285-9468

Research Objective

I am a motivated researcher with an expertise in Quantum Software Testing. My goal is to advance the understanding and development of testability in Quantum Software and Hybrid Quantum-Classical systems. My work focuses on Quantum Software Testability, Formal Verification, Quantum Information Theory, and the design of testing frameworks for emerging quantum-classical architectures.

Education

Sept 2020 – June 2023 **B.Sc. in Computer Science (AI Pathway)**,
King's College London, UK
Final Project: *Testing the Ethical Decision-Making of Autonomous Vehicles*

Research Experience

Oct 2023 – Present **PhD Candidate**, Department of Informatics, King's College London
- Investigating testing methods for hybrid quantum-classical architectures.
- Defining a novel metric for quantum testability: Quantum Squeeziness.
- Developed a taxonomy of real faults in these systems.
- Prospective Graduation March 2027

May 2023 – Sept 2023 **Fellow Researcher**, Department of Informatics,
King's College London
- Investigated testing approaches for autonomous vehicles using Carla and ROS.
- Designed and executed experiments to evaluate realism in simulation environments.
- Collaborated with Dr. Qunying Song (UCL), which resulted in a publication in *Automated Software Engineering* (see details below).

Publications

- **A. Bensoussan**, et al. (2025). *A Taxonomy of Real Faults in Hybrid Quantum-Classical Architectures*. *arXiv – Accepted ACM TOSEM*. [arXiv]

- D. Blackwell, **A. Bensoussan**, et al. (2024). *Fuzzing-Based Differential Testing for Quantum Simulators*. In: *Proceedings of SSBSE 2024*, pp. 63–69. [Springer Link]
- G. d’Aloisio, **A. Bensoussan**, et al. (2024). *Exploring LLM-Driven Explanations for Quantum Algorithms*. *ESEM 2024*, pp. 475–481. [ACM]
- **A. Bensoussan**, et al. (2024). *Accelerating Quantum Eigensolver Algorithms With Machine Learning*. *arXiv* – Accepted at OOPSLA 2025. [OOPSLA]
- Q. Song, **A. Bensoussan**, et al. (2025). *Synthetic versus real: an analysis of critical scenarios for autonomous vehicle testing*. *Automated Software Engineering*, Volume 32. [Springer]
- V. Klimis, **A. Bensoussan**, et al. *Shaking Up Quantum Simulators with Fuzzing and Rigour*. – Accepted at OOPSLA 2025. [OOPSLA]
- **A. Bensoussan**. *Quantum Squeeziness: An Information Theoretical Metric for Quantum Software Testability*. (Submitted at ICST)

Conferences & Presentations

Dec 2025	Lecture: Testing Hybrid Quantum-Classical Systems , Prof. Mousavi’s Master and 3rd year Bachelor Testing module, King’s College London
Nov 2025	Poster: Quantum Squeeziness: An Information Theoretical Metric for Quantum Software Testability , Advanced Quantum Algorithms for Many-body systems Workshop, Montpellier
Oct 2025	Talk: AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators , Talk: Shaking Up Quantum Simulators with Fuzzing and Rigour , OOPSLA 2025, Singapore
Oct 2024	Poster: A Taxonomy of Real Faults in Hybrid Quantum-Classical Architectures , PICS Summer School, ITU Copenhagen
Sept 2024	Poster: A Taxonomy of Real Faults in Hybrid Quantum-Classical Architectures , SeeQa, Oxford University
Dec 2023	Talk: Synthetic versus real: an analysis of critical scenarios for autonomous vehicle testing , MDENET

Awards & Honors

2022	B’NAI B’RITH UK – Rothschild Institute Award
------	--

Technical Skills

Programming Languages: Python, C, C++, R, Scala, MATLAB

Frameworks & Tools: Qiskit, Cirq, Pennylane, Tensorflow Quantum, ROS, Carla, Git, LATEX

Languages: French (Native), Hebrew (Fluent), English (Fluent), Portuguese (Beginner), Arabic (Beginner)

References

Prof. Mohammad Reza Mousavi

Professor of Software Engineering, Department of Informatics, King's College London

Email: mohammad.mousavi@kcl.ac.uk

Prof. George Booth

Professor of Theoretical Physics, King's College London

Email: george.booth@kcl.ac.uk

Dr. Karine Even-Mendoza

Lecturer in Systems & Programming Languages, King's College London

Email: karine.even_mendoza@kcl.ac.uk