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We present AccelerQ, a framework for automatically tuning quantum eigensolver (QE) implementations–

these are quantum programs implementing a specific QE algorithm–using machine learning and search-

based optimisation. Rather than redesigning quantum algorithms or manually tweaking the code of an

already existing implementation, AccelerQ treats QE implementations as black-box programs and learns to

optimise their hyperparameters to improve accuracy and efficiency by incorporating search-based techniques

and genetic algorithms (GA) alongside ML models to efficiently explore the hyperparameter space of QE

implementations and avoid local minima.

Our approach leverages two ideas: 1) train on data from smaller, classically simulable systems, and 2) use

program-specific ML models, exploiting the fact that local physical interactions in molecular systems persist

across scales, supporting generalisation to larger systems. We present an empirical evaluation of AccelerQ
on two fundamentally different QE implementations: ADAPT-QSCI and QCELS. For each, we trained a QE
predictor model, a lightweight XGBoost Python regressor, using data extracted classically from systems of

up to 16 qubits. We deployed the model to optimise hyperparameters for executions on larger systems of

20-, 24-, and 28-qubit Hamiltonians, where direct classical simulation becomes impractical. We observed a

reduction in error from 5.48% to 5.3% with only the ML model and further to 5.05% with GA for ADAPT-QSCI,

and from 7.5% to 6.5%, with no additional gain with GA for QCELS. Given inconclusive results for some 20-

and 24-qubit systems, we recommend further analysis of training data concerning Hamiltonian characteristics.

Nonetheless, our results highlight the potential of ML and optimisation techniques for quantum programs and

suggest promising directions for integrating software engineering methods into quantum software stacks.

CCS Concepts: • Software and its engineering→Application specific development environments; Search-based
software engineering.

Additional Key Words and Phrases: Quantum Computing, Quantum Program Analysis, Optimisation, Machine

Learning, Search-based Software Engineering, Genetic Algorithms
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1 Introduction
Modern Noisy Intermediate-Scale Quantum (NISQ) devices represent the current state of Quantum
Computing (QC). They operate with a limited number of qubits that are prone to errors due to

decoherence and imperfect control, and they lack the ability to perform fault-tolerant computations

due to the inability to sustain deep circuits required to demonstrate quantum advantage [2, 12,

72]. Quantum simulators have become essential tools due to their accessibility, cost-efficiency,

deterministic behaviour, and seamless integration into classical workflows. These simulators enable

researchers to prototype, optimise, and validate quantum algorithms without immediate access to

quantum hardware, to prepare for the future deployment on more reliable quantum hardware.

One of the most promising applications of QC lies in simulating quantum systems for chemistry

and materials. In the 80s, Feynman originally envisioned QC as a means to simulate quantummatter

more efficiently [31], and breakthroughs could accelerate advances in chemical production, materials

design, drug discovery, and, more recently, AI, healthcare, and finance [1, 43, 44, 51, 54, 56, 70].

Classical computational methods, however, struggle with these problems because representing and

analysing quantum systems requires resources that grow exponentially with system size. QC offers

an avenue to accelerate the process of simulation by representing and manipulating a quantum

state using polynomial resources.

Achieving optimisation in quantum computing (QC), outperforming classical methods, remains

a challenge in the NISQ era. While optimisation is a core concern in both classical and quantum

systems, quantum programs are not just classical code with quantum platform libraries’ invocations:

they implement unitary, reversible dynamics with stochastic measurements and run on noisy, NISQ

devices. Consequently, optimisations can yield no benefit or degrade accuracy ([22, 38, 50] and as

discussed in §8). Algorithmic frameworks and compiler-level tools, such as transpilers and circuit

synthesis or reduction methods [38, 53, 59, 98, 99], support optimisation, but, in practice, achieving

effective and reliable optimisation is a challenge [85, 99]. Optimisation targets circuit width (number

of qubits), depth (gate layers or terms), specific gate parameters such as rotation angles or fidelity [59,

98, 99], further approaches utilise machine learning (ML) [53] or user annotations at the program

level [38]. Further, directly optimising quantum implementations (i.e. programs that implement

quantum methods and algorithms) is especially critical for near-term applications, where resource

constraints are tight and execution time on real hardware is both limited and costly. One essential

aspect of this optimisation is hyperparameter tuning, adjusting key algorithmic parameters such

as gate configurations, gradient estimation methods, stopping criteria, resource allocation, and

truncation thresholds in approximations. While the problem of hyperparameter optimisation has

been extensively studied for classical algorithms [42, 103], it has also gained interest in the context

of quantum algorithms, particularly in quantum ML [19, 42, 61].

This work aims to optimise constants in quantum algorithm implementations, formulating it as a

hyperparameter optimisation problem. We investigate a class of quantum implementations known

as Quantum Eigensolvers (QEs). A key problem in quantum chemistry and materials modelling is

finding a system’s lowest energy state (ground state), which determines properties such as reaction

rates, spin interactions, and material stability. This importance has driven the development of

various quantum algorithms for the task, including the Variational Quantum Eigensolver (VQE)

[71, 87], ADAPT-VQE [36], and Quantum Phase Estimation (QPE) [49, 66], with corresponding

libraries and interfaces already integrated into quantum platforms, as discussed in §3.1.

Our Contribution. We investigate the optimisation of quantum implementations of Quantum Eigen-
solvers (QE) designed to find the eigenvalues and eigenvectors of a given Hamiltonian system and,

in particular, to calculate its lowest eigenvalue. We explore two QE implementations: (1) the Adapt
Quantum-Selected Configuration Interaction (ADAPT-QSCI) [48, 77] and (2) the Quantum Complex
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Exponential Least Squares (QCELS) [18, 24] eigensolvers. Our approach integrates SE and ML to

enhance performance and accuracy under hardware-like constraints (e.g. limited memory, fixed

shot budgets) utilising quantum simulators, thereby mimicking quantum hardware’s limitations.

We combine these two strengths within a search-based software engineering (SBSE) optimisation

framework [40]. SE enables code-level validation of hyperparameter suggestions, ensuring they are

physically plausible and correctly integrated into QE implementations (e.g. propagating proposed
values through actual executions and inspecting correctness beyond the final output).ML brings the

ability to generalise from prior optimisation runs. Specifically, we utilise (i) Genetic Algorithm (GA)

to explore the hyperparameter space via mutation and crossover, and (ii) ML to predict promising

regions from training on small Hamiltonians (≤ 16 qubits). This strategy avoids local minima,

accelerates convergence, and, by incorporating Hamiltonian structure, provides a richer, physically

informed search space. It addresses a second challenge: solving systems above 16 qubits are often

prohibitively expensive or infeasible in the current NISQ era [62].

By training on small, classically simulable systems, ML models can capture correlations between

Hamiltonian properties and effective hyperparameters under a given QE implementation. It is

feasible because local physical interactions in molecular systems persist across scales (e.g. a small

hydrogen chain appears identically as a subsystem in a larger one), allowing the model to learn from

these recurring structural building blocks. Nonetheless, the framework is implementation-agnostic:

it operates on any Hamiltonian and takes the QE implementation Python and quantum libraries

code as input. The only implementation-specific components are a testing mechanism to detect

physically invalid hyperparameter values and the extraction of all tunable constants, which can

differ between implementations, even for the same quantum algorithm.

We developed AccelerQ to optimise QEs’ hyperparameters. An ML model, QE predictor,
trained on evaluations of small systems per QE implementation, was used to generalise to larger

systems. In our experimental evaluation, we trained AccelerQ on small systems: systems up to 16

qubits and predicted the hyperparameters for larger systems: 20-, 24-, and 28-qubit systems. All

20–28 qubit test systems were fully unseen during training. Optimisation was then performed per

QE implementation and target Hamiltonian, thus each larger system receives its own optimised

hyperparameters. We compared these against the default hyperparameters, which remain fixed

regardless of the QE’s input. Results show clear improvements for complex systems, particularly at

20 and 28 qubits, with minimal or no gain on simpler systems with fewer Hamiltonian terms.

Figure 1 illustrates the architecture of AccelerQ and highlights the interplay among its core

components, which directly align with the key contributions of this paper:

QE library

§3.1
Data

Augmentation

§4.3

QE predictor training

Hyperparameter

Optimisation

Evaluation

§6

Adapt QSCI

§3.2

QCELS

§3.3

Fitness

function

§4.1

XGBoost

regressor

§4.4

Search-based

optimisation

§4.5

Test Set

§4.2

MPS simulator

Small hamiltonians (≤ 16 qubits)

Hyperparameters’ generator

Large hamiltonians (> 16 qubits)

input

input

input

input

features/labels fitness proxy

suggested hyperparameters

model files

uses validates

Fig. 1. AccelerQ at a glance: inputs from the QE library feed data augmentation and training (QE predictor),
which serves as a fitness proxy for hyperparameter optimisation; suggestions are evaluated on a simulator.
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• Formulating the Optimisation Problem (§2): We describe the fitness function of our optimi-

sation problem as a hyperparameter optimisation problem of a given QE and a Hamiltonian.

• A General Framework for QE Optimisation (§4): We propose a search-based framework

combining ML and GA to optimise QE implementations’ hyperparameters at the level of QE

implementation and a problem Hamiltonian.

• Scalable Learning from Small Quantum Systems to Apply on Larger Systems (§4): We

introduce a methodology that learns patterns from small, classically simulable quantum systems

(≤ 16 qubits) and applies this knowledge to optimise simulations of larger systems (20–28 qubits).

• AccelerQ Implementation (§5): We implemented our approach in a new tool, AccelerQ, which
treats the QE implementations as a black box, requiring no internal modification.

• Empirical Evaluation on Two QE Implementations (§6, §7): We evaluated AccelerQ on
two use cases (ADAPT-QSCI and QCELS) across 16 Hamiltonian systems.

• Manual Analysis and Validation (§8, §9): We further investigated the correctness of the

results manually, beyond comparing the reference result, ensuring reported results are sensible

and stem from a valid computation of the lowest eigenvalue and not by chance.

We empirically evaluated our contributions through five research questions (𝑅𝑄s).

𝑅𝑄1 How does AccelerQ affect hyperparameter values in QE implementations compared to their
default settings?

𝑅𝑄2 Can QE predictor models trained on smaller systems make useful predictions for optimal
hyperparameters generalise across system sizes?

𝑅𝑄3 To what extent can AccelerQ’s optimisation of hyperparameters accelerate and improve the
efficiency and accuracy of QE implementations in terms of system size?

Via an ablation study, in 𝑅𝑄4, we compare the performance of AccelerQ against a weaker variant of
it, to assess whether the additional effort introduced by genetic algorithms and code-level validation

of hyperparameter suggestions, i.e. a set of tests, yields meaningful improvements.

𝑅𝑄4 How scalable is each configuration, in terms of iterations and error rate, when applied to QE
implementations for Hamiltonian systems with increasing qubit number and complexity?

𝑅𝑄5 To what extent does AccelerQ affect the variance of QE results (error, iterations, and final
energy) across Hamiltonians of the same size?

𝑅𝑄5 goes beyond achieving the lowest scores: it examines the optimisation process’s stability,

reproducibility, and threats to validity. The 𝑅𝑄s evaluate each contribution’s impact, first the QE
predictor model, then the genetic algorithm (GA) guided by a test set, on hyperparameter optimi-

sation. We assess AccelerQ by comparing it against the baseline (the QE’s default hyperparameters)

and two variants of AccelerQ: (1) only ML, and (2) combining ML with a GA guided by a test set.

2 Quantum Eigensolvers as Optimisable Software Components

Quantum eigensolvers (QEs) are quantum algorithms designed to approximate primarily the lowest

energy eigenvalue of a physical system and the corresponding eigenstate. A quantum system is

defined by a Hamiltonian, an operator that describes how the system evolves and encodes its total

energy.

Estimating energy levels of large quantum systems remains computationally demanding: current

NISQ hardware suffers from noise that scales exponentially with the size of the studied system.

Hence, the circuits we are investigating (≥ 20 qubits) would produce unusable outputs on quan-

tum hardware available today. Simulating such circuits classically eliminates noise, but requires

exponentially growing resources, making new quantum-based techniques and their optimisation

essential for estimating energy levels in larger systems.
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Initial State

Hyperparameters

Improved Eest
(Lower Error)

Problem Hamiltonian

Quantum 
Eigensolver (QE) 
Implementation

Fig. 2. Overview of QE algorithms, with the grey-dashed area indicating where automated software engineer-
ing andmachine learning can enhance outcomes. Initial State is the Ansatz or Reference State;Hyperparameters
are numerical/boolean data and differ between implementations of QE; Problem Hamiltonian is an operator
or function that represents the total energy of a system; and Improved 𝐸𝑒𝑠𝑡 is the improved (low-error) lowest
eigenvalue approximation, possibly including also the lowest eigenstate.

QE implementations (§3.1) combine a series of operations, e.g. quantum gates, on the quantum

simulator or hardware andmeasurements of the state of the system to either prepare a representation

of the eigenstate of the Hamiltonian or directly evaluate its eigenvalue. QEs take as input a problem

Hamiltonian, an initial state
1
, and a set of hyperparameters as input (see Figure 2). They return an

estimate of the lowest eigenvalue with performance depending on the specific QE implementation,

the properties of the Hamiltonian, and the suitability of the chosen hyperparameters in the context

of the input Hamiltonian. This can be formulated as a minimisation optimisation problem:

𝑓QE (𝜽 ; 𝐻̂ ) =
��𝐸est (𝜽 ; 𝐻̂ ) − 𝐸true (𝐻̂ )�� (1)

thus 1) 𝐻̂ is the input Hamiltonian, 2) 𝜃 denotes the QE hyperparameters, 3) 𝐸est (𝜽 ; 𝐻̂ ) is the
estimated lowest eigenvalue from the QE implementation, and 4) 𝐸true (𝐻̂ ) is the true ground state

energy (computed classically or known analytically). This absolute error defines the fitness function
and is used to optimise hyperparameters for accuracy. When 𝐸true is unavailable, the error rate

percentage likely cannot be computed due to complexity of the Hamiltonian system; however,

for variational methods, a more accurate prediction corresponds to a lower (i.e. more negative)

estimated energy, assuming this property is correctly encoded in the QE implementation. If the

implementation is faulty, trivially, optimisations are not expected to yield correct results.

Research Problem. This work aims to improve the accuracy of quantum eigensolver (QE) imple-

mentations through automated optimisation. The areas shaded in grey in Figure 2 are those parts

we can control and optimise with automated software engineering methods. We operate under

the constraint that the QE implementation is treated as a black box
2
. Consequently, we focus on

identifying hyperparameter configurations that improve estimation accuracy for a given input

Hamiltonian, and defer the optimisation of initial state preparation to future work.

AccelerQ takes as input the source code of a QE implementation (in our case, written in Python),

along with manually identified terms and their associated data types that are expected to influ-

ence performance (currently through manual inspection, with plans for automation). Based on

these parameters, AccelerQ samples the QE’s behaviour in a black-box manner using small input

Hamiltonians to train a QE predictor model. This model is then used to automatically adjust the

relevant constants to optimise performance for larger input systems as a preprocessing step before

execution. Incorporating the Hamiltonian into the workflow or modelling of quantum programs,

although less conventional than the circuit model, opens up further opportunities for program

analysis, particularly in simulation-driven domains like quantum chemistry.

1
Typically the Hartree-Fock state in chemistry applications [84].

2
This is partly because we aim to present a general solution that takes a QE implementation as input, rather than re-writing

its internal code manually, and partly because constructing or improving a QE implementation remains a significant

challenge in its own right [76, 77], arguably falling within the domain of quantum physics research.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 354. Publication date: October 2025.



354:6 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

3 Background

Our approach combines quantum computing (§3.1), exemplified on two QE used in our evaluation

(§3.2 and §3.3), with machine learning techniques applied to software engineering (§3.4).

3.1 Quantum Implementations andQuantum Eigensolver

We refer the reader to [66] for background on quantum gates, circuits and Hamiltonians. We focus

here on quantum computational models and QE implementations. Quantum implementations

are programs written in languages such as Python, Java, or C/C++, using dedicated libraries

provided by quantum computing platforms. Many quantum platforms provide ready libraries,

interfaces or templates for QE implementations, such as the standard quantum chemistry libraries

in Qiskit [73] and PennyLane [96], whilst others have external packages like Cirq [74] and Braket

[4]. Specifically, a VQE implementation is included in the Qiskit Algorithms library. Qiskit also

defines general-purpose eigensolver interfaces (not limited to VQE-style algorithms), such as

Eigensolver and MinimumEigensolver. Nonetheless, quantum platforms can support QE execution

via plugins or external libraries, even if QE functionality is not included natively, for example, with

OpenFermion-Cirq, pennylane-braket, and pennylane_qiskit, e.g. [17] (subsection 7.4.3).

Quantum eigensolver implementations can be broadly categorised by how they interact with the

input Hamiltonian. Most commonly, the Hamiltonian is translated into a parametrised quantum

circuit, as in variational and phase estimation algorithms under the quantum circuit model [66, 71].

Alternatively, purely classical eigensolvers may operate directly on the Hamiltonian through exact

diagonalisation, but are limited by unfavourable scalability [20]. A third category includes quantum

computational models that act directly on the Hamiltonian without circuit translation, such as

QCELS, adiabatic quantum computation, and quantum annealing, which represent different but less

common non-circuit-based approaches to quantum computing [29, 46]. In general, these methods

are less suited to NISQ devices as they rely on continuous-time evolution or hardware-specific

requirements that are difficult to implement on noisy gate-based hardware.

In §6, we consider two representative examples: one translates the Hamiltonian into a quantum

circuit (§3.2), and another operates directly on the Hamiltonian without circuit decomposition

(§3.3). In this paper, we treat each QE as a black box, with its internal lowest-energy minimisation

objectives defined in [18, 63]. Our optimisation instead targets the prediction error defined in

Equation 1. Consequently, we provide a high-level description of each QE (in §3.2 and §3.3) and

refer the reader to the original publications for full mathematical details.

3.2 ADAPT-QSCI Algorithm

The Quantum-selected configuration interaction (QSCI) method is a quantum chemistry algorithm

that calculates molecular electronic structures in an intelligently chosen subspace, enabling larger

systems to be studied on modern NISQ devices [48]. An exact calculation in the full Hilbert space,

even when constrained by symmetries, requires a high computational cost and memory usage

infeasible for large Hamiltonians. QSCI reduces the computational space by selecting the subspace

consisting of only the computational basis states (aka configurations in quantum chemistry) with

the highest weight in some pre-chosen input state prepared on a quantum computer. Hamiltonian

diagonalization is in the selected 𝑅𝑘 dimensional subspace 𝑆𝑘 = span{|𝑟 (𝑘 )
1
⟩ , . . . , |𝑟 (𝑘 )

𝑅𝑘
⟩} [48]. QSCI

uses a quantum computer only to generate the subspace via sampling. The subsequent calculation

to output the ground-state energy is executed on classical computers. This is feasible on classical

machines because QSCI reduces the subspace dimensionality.
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|0⟩ 𝐻 • 𝑊 𝐻

|𝜓0⟩ 𝑒−𝑖𝑡𝑛𝐻

Fig. 3. QCELS circuit [24].W gate represents an optional 𝑆† gate to calculate the imaginary part of the result,
and if removed, the real part is calculated.

The Adaptive Construction of Input State for Quantum-Selected Configuration Interaction

(ADAPT-QSCI) algorithm [63] iteratively uses QSCI to construct the input state for the next QSCI

iteration. At each step, a subspace is selected by measuring the quantum state from the previous

step. ADAPT-QSCI chooses the next quantum gate to add to the input state from a predefined set

of multi-qubit Pauli operators IP = {𝑃1, . . . , 𝑃𝑇 } by calculating the gradients, ℎ 𝑗 = ⟨𝑐𝑘 |𝑖[𝐻, 𝑃 𝑗 ]|𝑐𝑘⟩3,
in the subspace 𝑆𝑘 . The Pauli operators are generators of rotation gates. The optimal rotation angle

of the gate (the angle which lowers the energy of the state the most) is also found classically in

the selected subspace 𝑆𝑘 . The algorithm is similar to ADAPT-VQE [36], but differs in how the

next gate and rotation angle are chosen. Whereas ADAPT-VQE selects them directly through

quantum measurements, ADAPT-QSCI computes them classically within a subspace informed

by measurements of the previous quantum state while utilising quantum computing in the state

preparation and measurement steps.

3.3 QCELS Algorithm

We utilise the Quantum Complex Exponential Least Squares algorithm (QCELS) [24]. NISQ al-

gorithms typically prepare an ansatz state and measure it in a Pauli basis [66], whereas QCELS

uses a controlled time-evolution unitary. It avoids the optimisation issues that hinder large-scale

variational NISQ algorithms [15, 57] and has a low enough circuit depth to be likely suitable for

early error-corrected quantum computers, making it well-suited for problems with more qubits

than NISQ algorithms can handle.

QCELS takes a reference state |𝜓0⟩ and evolves it by the time evolution operator𝑈 (𝑡) = 𝑒−𝑖𝐻𝑡
,

where 𝐻 is the Hamiltonian system. The time evolution operator is enclosed within a Hadamard

test (as depicted by Figure 3), see [66] for an introduction to quantum circuits. This circuit measures

the overlap between the time-evolved state 𝑈 (𝑡) |𝜓0⟩ and the initial reference state |𝜓0⟩. If the
reference state is not exactly the ground state, the resulting expectation value as a function of

𝑛 is 𝑍𝑛 ≈ ⟨𝜓0 |𝑈 (𝑡𝑛) |𝜓0⟩ = Σ𝑖𝑝𝑖𝑒
−𝑖𝐸𝑖𝑡𝑛

where 𝑝𝑖 = | ⟨𝜙𝑖 |𝜓0⟩ |2 is the probability of measuring the

eigenstate |𝜙𝑖⟩ of the Hamiltonian. Thus, if a reference state with good overlap with the true ground

state is known, we can apply the time evolution operator within a Hadamard test 𝑁 times and fit to

the resulting complex exponential. We implemented the time-evolution operator using a first-order

Trotter–Suzuki expansion, truncating the Hamiltonian to the terms with the largest coefficients to

reduce gate count. We fit the resulting data with a function composed of a sum of three complex

exponentials (Equation 2), to partially account for the inexactness of the reference state.

𝑓
(3)
fit

= 𝑟1𝑒
−𝑖𝜃1𝑡

+𝑟2𝑒
−𝑖𝜃2𝑡

+(1 − 𝑟1 − 𝑟2)𝑒−𝑖𝜃3𝑡 , (2)

In Figure 4, we present results for test data collected from an orbital rotated Hubbard Hamiltonian

on a 28-qubit example (in blue dashed line), with a sequential improvement towards the correct

answer as we increase the number of frequencies in the fit: first fitting in red, second fitting in

3 |𝑐𝑘 ⟩ is a state corresponding to classical vector 𝑐𝑘 =
∑𝑅𝑘

𝑙=1
(𝑐𝑘 )𝑙 |𝑟 (𝑘 )𝑙

⟩, and 𝑖[𝐻, 𝑃 𝑗 ] is calculated through projecting onto

the subspace 𝑆𝑘 and evaluating the expectation classically using the classical vector 𝑐𝑘 .[63].
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(a) 𝑓 (1)fit (b) 𝑓 (2)fit (c) 𝑓 (3)fit

Fig. 4. QCELS results from orbital rotated Hubbard Hamiltonian, 28-qubit sample data, various parameters.

green and third fitting in black, showing an improvement throughout the process of a minimisation

problem.

3.4 Software Engineering Optimisation Methods

Search-based software engineering (SBSE) techniques and genetic algorithms (GA) have been

widely applied to diverse SE problems such as code and requirements optimisation [34, 40, 41, 55].

GA aims to find the near-optimal solution iteratively, ending when a stopping condition is met,

e.g. reaching the maximum iterations. Commonly, such approaches start with a set of candidate

solutions, each evaluated using a fitness function. At each iteration, the best solutions are selected

based on fitness, and variation is introduced through mutation (e.g. bit flips) and crossover to

explore the search space and produce potentially better offspring. To avoid premature convergence

to local optima, diversity can be maintained by adding noise or removing a portion of the candidates.

When direct evaluation of the fitness function is computationally expensive or infeasible, the fitness

function can be approximated for large Hamiltonians with machine learning (§4).

The Gradient Boosting technique [32] is a supervised learning method suitable for regression

and classification. It efficiently handles large amounts of data, real numbers and datasets with

many features. In this work, we use it to train QE predictor in §4. The resulting QE predictor
model enables high-precision predictions on large datasets, effectively avoiding flat predictions

from scaling issues or oversimplified outcomes caused by insufficient data relative to the number

of features.

4 AccelerQ

This section details the methodology of AccelerQ: data augmentation, predictor training, and

search-based optimisation. These are not contributions in isolation but, together, instantiate our

core contribution: embedding SE and ML into the optimisation loop of QE implementations to

reduce error under hardware-like constraints (§6). In our evaluation, we applied this process to

two QE implementations (§3.2, §3.3) and summarised the findings in §7.

More concretely, AccelerQ aims to enhance quantum implementation performance through

hyperparameter optimisation. We manually examine the QE implementation to extract a hyper-

parameter set
4
and formulate a hyperparameter optimisation problem. AccelerQ utilises SSBS

and ML methods to optimise a QE implementation via tuning of the hyperparameter vector 𝜃 , for

4i.e. some expressions are extracted from the inner code, like the terms governing the Hamiltonian representation, while

others are already part of the parameters of the original problem, such as the number of shots.
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Fig. 5. AccelerQ process: Classical pre-processing, QE predictor model training on smaller systems and
generalisation on bigger systems

which an exhaustive evaluation is computationally infeasible, particularly for large Hamiltonians.

Selecting optimal parameters can reduce the number of shots (measurements) and improve the

accuracy of ground-state energy predictions.

Figure 5 illustrates our hyperparameter optimisation algorithm for quantum problems, which

follows the phases below.

Prepare the QE implementation for tuning. Given an implementation: a QE implementation

to optimise, we identify tunable constants in the QE implementation (some already exposed as

parameters, others moved out of the code) and write tests to validate hyperparameter values. Given

𝜽 and a QE’s test set, we can now define the Hyperparameters Generator: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 , a function to

generate valid hyperparameters for a given QE implementation. Each implementation requires its

own generator.

This phase defines 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 , 𝜽 (§4.1) and a QE’s test set (§4.2).

Data extraction & augmentation. ( A , B , C Figure 5) Given an implementation and a

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 we sample solutions from few-qubit systems: a collection of small-Hamiltonian system

problems (16 qubits or fewer) from open-source/benchmark datasets. We run the QE implementa-

tion in classical simulation mode: a statevector simulator
5
, to generate training data for the input

implementation, where 𝐸est_classical is the estimation of a QE’s lowest eigenvalue computations in

classical simulation mode. Thus can compute, 𝑦 = 𝐸est_classical (𝑥), where:
• Inputs (X): the tuple 𝑥 = (𝜽 ; 𝐻̂ ), which is the compressed/flattened Hamiltonians and the

hyperparameter vectors.

• Outputs (Y): exact energy values, 𝑦, (computed classically).

Note that, AccelerQ uses the four input sets (implementation, Hamiltonian systems, statevector

and 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 detailed above) to extract data arrays classically, based on the hyperparameter format

(𝜃 ) and the specific hyperparameter ranges of that implementation (i.e. the QE’s test set, which
can include tests as the maximum number of iterations is an integer, whereas the Hamiltonian

coefficient cut-off is a float), which are encoded into the hyperparameters 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 .

This phase defines the training dataset saved as feature–label pairs (X,Y) (§4.3).

Train QE predictor. ( D , Figure 5) Using the feature–label pairs (𝑋,𝑌 ) dataset from the data

extraction & augmentation phase, AccelerQ trains an XGBoost model on the dataset to predict

ground-state energy (Ys) from {hyperparameters, Hamiltonian} pair (Xs). We save it as the QE
predictor model for the input QE implementation to optimise.

5e.g. see https://www.epcc.ed.ac.uk/whats-happening/articles/energy-efficient-quantum-computing-simulations.
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This phase defines QE predictor for the input implementation (§4.4).

Deploy QE predictor for optimisation. ( E , Figure 5)Given an implementation, its QE predictor
and 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 , and a large system (Hamiltonian of more than 16 qubits), AccelerQ generates a

prediction of optimal hyperparameters, using QE predictor as our fitness function (i.e. 𝑓QE (𝜽 ; 𝐻̂ ),
Equation 1), 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 with mutation and crossover operators and a GA feedback loop to refine

the initial suggestions. AccelerQ iteratively proposes candidate hyperparameters, QE predictor
predicts their performance, and the best candidates are propagated for further mutations.

This phase defines the optimised hyperparameters for an implementation and a Hamiltonian (§4.5).

AccelerQ provides tailored hyperparameter recommendations for executing an input QE im-

plementation, customised for each specific Hamiltonian and QE implementation ( F , Figure 5).

We compare each QE implementation’s default hyperparameters against those optimised by our

framework with an MPS simulator to assess the quality of the prediction in the evaluation §6.

Justification:Direct evaluation of the lowest eigenvalue given a Hamiltonian system is (1) costly to

compute on quantum hardware and (2) computationally difficult to compute accurately on classical

computers due to its complexity. Since exhaustive search or direct evaluation of 𝜃 is infeasible

for large systems, we train QE predictor, a regressor, on small, classically simulable systems to

estimate energy as the GA’s fitness function. Consequently, the model approximates the ground

state energy, aiming to minimise prediction error trends rather than exact values (see Equation 1).

GA was chosen for its ability to handle mixed-type inputs, explore large search spaces, and, in

this work, integrate code-level feasibility tests for hyperparameter assignments directly into the

evaluation loop (i.e. the QE’s test set). XGBoost was selected for its robustness on sparse, nonlinear,

and floating-point data. XGBoost alone is insufficient, as it struggles on mixed-type inputs and could

naively increase parameters such as sampling_shots or iteration_max to improve predicted

performance without considering resource constraints. Importantly, our optimisation targets the

QE implementation’s hyperparameters, not the ML model’s, distinguishing our work from typical

ML hyperparameter tuning. Exploration of alternative regressors, ML hyperparameter tuning, or

other modelling setups for QE predictor is left for future work.

4.1 Fitness Function

AccelerQ employs a fitness function, 𝑓QE (𝜽 ; 𝐻̂ ), defined in Equation 1 to iteratively optimise the

hyperparameters of a given QE implementation, minimising error in the predicted ground-state

energy of a given Hamiltonian 𝐻̂ . The QE hyperparameters, 𝜃 , is an ordered tuple represented as a

vector of mixed types (float, boolean, integers). In the preparation stage, we define 𝜃 ’s structure per

QE. ADAPT-QSCI and QCELS’s are listed in §6. Example 1 shows possible differences between the

default hyperparameters, 𝜽𝐷𝐸𝐹 , which were in the original QE implementation, the two variants of

AccelerQ, one using only ML 𝜃𝑂𝑃𝑇 , and one combining ML with a GA guided by a test set 𝜽𝑇𝐸𝑆𝑇 .

Compressed Flattened Hamiltonian: In our setting, 𝐻̂ is the problem Hamiltonian, encoding the

total energy of the quantum system. It is represented in code as a FermionOperator object (from
OpenFermion), which stores a set of term-coefficient pairs. Terms are floats, and coefficients are

complex numbers. 𝐻̂ is converted into a fixed-length numeric feature vector via the following steps:

(1) Term extraction: Retrieve all operator–coefficient pairs from the FermionOperator.
(2) Flattening: Recursively unpack any nested list or tuple structure into a one-dimensional list

of floating-point numbers, discarding any imaginary component.

(3) Filtering: Remove small-magnitude values below a given threshold (e.g. |𝑥 | ≤ 0.2).

(4) Sorting: Sort coefficients by absolute value to prioritise larger contributions.
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Effect of Hyperparameter Optimisation for ADAPT-QSCI

Example 1. For ADAPT-QSCI, the default hyperparameters (𝜃𝐷𝐸𝐹 ) are:

100, 0.001, 0, 100, 100000, 1.00E−06, 5, 128, 0,<Compressed Flattened Hamiltonian>

Using these, the predicted lowest eigenvalue for a 20-qubit system is −21.102120951, compared to the true value of
−22.046059902. AccelerQ optimises the hyperparameters and may yield the assignment (𝜃𝑂𝑃𝑇 ):

985, 7.64647e−03, 0, 344658, 49458, 5.67168e−05, 3, 77, 1,<Compressed Flattened Hamiltonian>

This results in a prediction of −21.513448108, cutting the error by half. Using the hyperparameter validation set (𝜃𝑇𝐸𝑆𝑇 ),
AccelerQ selects more reasonable values—for example, reducing the algorithm’s maximum iterations from 344,658 to a
much lower limit. The values in this example follow the order and format of the hyperparameters listed in Table 1.

This produces a compact representation of 𝐻̂ that captures both the structure of the interactions and

their relative strengths, enabling regression models to correlate Hamiltonian characteristics with

effective hyperparameter settings. The compressed, flattened Hamiltonian remains fixed during

optimisation and is not mutated.

4.2 Hyperparameter Validation Test Set

Hyperparameter optimisation is inherently greedy: selecting the set with the minimum predicted

value often yields configurations with a combination of a high number of shots and many iterations.

While this may improve accuracy, it also leads to execution times spanning days or weeks. In

simulations, running such setups locally may be inconvenient but manageable. However, the com-

putational cost can become extremely expensive when deployed on quantum hardware. Moreover,

many platforms cap the number of shots per execution or over time, further limiting the feasibility

of high-resource configurations.

A QE’s Test Set: We implement static and semi-dynamic validation tests to ensure sensible hyper-

parameter combinations. Static tests check constraints without execution of the QE implementation

code, while semi-dynamic tests run selected functions without executing the full ADAPT-QSCI

or QCELS pipeline. The tests aim to enforce some constraints roughly to avoid disrupting the

overall optimisation process (e.g. limiting max iterations to 1000 when typically only 100 fit in

ADAPT-QSCI). These tests are encoded into the 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 with static tests running first, followed

by more complex ones. Each QE implementation has its own test set, with some overlap. We list

the test set for each QE implementation in §6.

4.3 Data Augmentation

ML algorithms operate in two primary phases: training and prediction. In a supervised learning

context, the training phase requires a sufficiently large and representative dataset consisting of

input instances and corresponding ground truth outputs. When this dataset is diverse and of high

quality, the trained QE predictor model can generalise and make reliable predictions on unseen

data. Therefore, the effectiveness of our approach strongly depends on the quality and size of

the training dataset. However, obtaining a large and robust dataset for quantum simulations is

challenging, primarily due to the high computational cost of accurately computing energy levels

for large Hamiltonians on quantum hardware
6
.

To address this challenge, we employ a domain-specific form of data augmentation ( A , B , C
Figure 5). We generate multiple variants of input Hamiltonians by modifying their parameters

6
For example, IBM’s quantum computing is priced at $48 per minute https://www.ibm.com/quantum/pricing
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or structures in physically meaningful ways that preserve essential characteristics. This includes

truncating Hamiltonian terms below a meaningful threshold or adjusting coefficient cutoffs. These

variations simulate plausible alternative quantum systems, effectively enriching the training set

while preserving the statistical properties needed for generalisation. Since these transformations

are applied to Hamiltonians with up to 16 qubits, we can compute accurate energy levels using

classical state vector simulators, avoiding the need for costly quantum hardware. Moreover, because

our systems are relatively small, the data augmentation process can be executed efficiently on

standard classical hardware (e.g. x86 CPUs), without requiring GPUs or specialised accelerators.

Each training instance is (x𝑖 , 𝑦𝑖 ), with x𝑖 = (𝜽 𝑖 ; 𝐻̂𝑖 ) and 𝑦𝑖 = 𝑓𝑄𝐸 (𝜽 𝑖 ; 𝐻̂𝑖 ), where 𝐻̂𝑖 , is the

compressed Hamiltonian (preserving essential physical properties while saving memory and

avoiding over-fitting), 𝑓𝑄𝐸 , is the exact energy level (computed classically), and 𝜽 , the associated

hyperparameters. To generate many x𝑖 , we augment by drawing 𝐻̂ from open-source/academic

benchmarks, and 𝜽 is sampled at random within predefined type/range constraints.

We perform augmentation separately for each QE implementation because (1) hyperparameters

differ across implementations, and (2) each implementation exhibits different behaviour, even when

using a classical state vector simulator. We use the resulting dataset, (𝑋,𝑌 ), to train a QE predictor
model to predict suitable hyperparameters for unseen Hamiltonians with up to 28 qubits.

4.4 The QE Predictor Training

While computing the fitness function (or lowest eigenvalues) for QE with 20-30 qubits is feasible,

doing so directly is computationally extremely expensive. Instead, we use a QE predictor model

to approximate the relationship between hyperparameter choices. We collect data arrays from

Hamiltonian systems with ≤ 16 qubits, of hundreds of computationally inexpensive samples (§4.3).

These smaller systems typically have higher minimum energy levels. Nonetheless, the aim is not

to compute the exact minimum eigenvalue but to identify hyperparameters likely to yield lower

values. This reduces computational cost while guiding optimisation effectively, enabling evaluation

of many assignments of 𝜽 in §4.5 to make informed predictions for larger, more computationally

demanding systems.

AccelerQ trains a QE predictor model in two phases ( D , Figure 5).

In the data preparation phase, we construct the feature array using data collected via data

augmentation (§4.3), creating an (𝑋,𝑌 ) augmented dataset; 𝑌 ’s values represent the true values

obtained during the data preparation phase. AccelerQ pads all 𝑥𝑖 ∈ 𝑋 to a fixed-size feature array

of a predefined maximal size of the Hamiltonian systems. We include the compressed, flattened

Hamiltonian (§4.1) in the feature array to establish a connection between the hyperparameter

values and the specific characteristics of a Hamiltonian. These include e.g. dominant terms. The

dataset is stored in a persistent storage for the training phase. In the training phase, AccelerQ trains
a Regularising Gradient Boosting Regression (XGBoost regressor) using (𝑋,𝑌 ) padded augmented

dataset, for a given QE’s hyperparameter vector and compressed Hamiltonians. The above can be

summarised in the following steps:

Inputs: (𝑋,𝑌 ), 𝐻̂ .

(1) Pads all vectors 𝑥𝑖 in 𝑋 to a fixed size: |𝜃𝑖 |+𝑚𝑎𝑥{|𝐻̂ |,max𝑥𝑖=(𝜽 𝑖 ;𝐻̂𝑖 ) ∈𝑋 |𝐻̂𝑖 |}.
(2) Splits into training set and test set.
(3) Trains XGBoost regressor with training set.
(4) Evaluates on the test set.
(5) Saves the trained model for use in §4.5.
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Output: model_file𝑄𝐸_𝐼𝑀𝑃𝐿_𝑁𝐴𝑀𝐸 .

The QE predictor is generic, but training data depend on the QE implementation, solver, and

hyperparameter generator. Trained models are saved as model_file𝑄𝐸_𝐼𝑀𝑃𝐿_𝑁𝐴𝑀𝐸 .

4.5 Optimisation

Once trained, QE predictor predicts optimal hyperparameters for larger-qubit Hamiltonians ( E ,

Figure 5). We use a QE predictor to evaluate the fitness function, 𝑓𝑄𝐸 (Equation 1) for the search-

based optimisation process and apply mutations that adhere to the format of its hyperparameters.

In the hyperparameter optimisation phase, given a QE implementation (with its 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 and

QE predictor) and an input Hamiltonian 𝐻̂ with more than 16 qubits–preprocessed (compressed

and flattened) as in training–, AccelerQ initialises a population of candidate vectors {(𝜽 𝑖 ; 𝐻̂ )},
where each seed 𝑖 is a hyperparameter assignment sampled by the 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 . The fitness function,

𝑓𝑄𝐸 , evaluates each candidate by approximating the lowest eigenvalue for (𝜽 𝑖 ; 𝐻̂ ) configuration,
utilising the QE predictor to compute an approximation of 𝑓𝑄𝐸 (𝜽 𝑖 ; 𝐻̂ ), and then selects the the best-
performing candidates (those with the lowest predicted scores) for mutation in the next generation

to create new seeds. A crossover operator then combines pairs of these vectors to generate new

hyperparameter candidates, using methods such as averaging, selecting extreme values, and random

values (see in [10]). AccelerQ occasionally introduces noise to diversify solutions and avoid local

minima. The process continues until a stopping condition is met, such as reaching a maximal

number of iterations. The vector 𝜽 with the lowest error (or just the lowest predicted eigenvalue

if the true value is unknown) is then returned as the optimal hyperparameter set. The procedure

steps are as follows:

Inputs: model_file, regressor, generator, test_static, test_semi_dynamic, 𝐻̂ , C = ∅.
(1) Load QE predictor: 𝑓𝑄𝐸 ← load_model(model_file, regressor).

(2) Seed Initial population: Repeat 𝑖 = 1..500:

2.a. Sample 𝜃𝑖 ←generator(𝑖, opt_n_qubit)
2.b. if fails test_static || test_semi_dynamic: discard 𝜃𝑖 else: C ← C ∪ {(𝜽 𝑖 , 𝑓𝑄𝐸 (𝜽 𝑖 ; 𝐻̂ ))}

(3) Iterative improvement:

3.a. Selection: keep best ∼10%, lowest scores in C.
3.b. Mutation: repeatedly combine two, 𝜽𝑘 and 𝜽 𝑗 , thus (𝜽 𝑗 , 𝑠𝑐𝑜𝑟𝑒 𝑗 ), (𝜽𝑘 , 𝑠𝑐𝑜𝑟𝑒𝑘 ) ∈ C using one

of the crossover operators, resulting in a new mutant 𝜽 𝑖 .

3.c. if fails test_static || test_semi_dynamic: discard 𝜃𝑖 else: C ← C ∪ {(𝜽 𝑖 , 𝑓𝑄𝐸 (𝜽 𝑖 ; 𝐻̂ ))}
3.d. Periodic pruning & noise: every 5 rounds, prune the population (keep top ∼50%) and inject

new random seeds via generator (filtered by tests) to maintain diversity.

Output: Return best 𝜃★ that is the 𝑥 of (𝑥,𝑦) ∈ C such that 𝑦 is the smallest in C.
The model_file is unique per QE implementation (i.e. model_file𝑄𝐸_𝐼𝑀𝑃𝐿_𝑁𝐴𝑀𝐸 ) and regressor

is XGBoost (§4.4). test_static and test_semi_dynamic are the QE’s test set (§4.2), require access
to the QE implementation’s code, and are applied in order of cost, with static tests run first. The set

𝐶 , the seed set, contains pairs of hyperparameters and their corresponding fitness function scores.

In our experiments, Step (3) ran for 50 iterations. We execute the QE implementation with 𝜽★
( F ,

Figure 5). We repeat the optimisation for each Hamiltonian system and for both ADAPT-QSCI and

QCELS implementations in §7.
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5 Implementation Details

We implemented AccelerQ (all stages in §4) in Python 3.10.12, using a GPU for training and

keeping QE predictor models small for CPU deployment. We employ the open-source Python

XGBoost library (eXtreme Gradient Boosting) [97]. We used the Python library QURI Parts7 for
the simulations while applying some resource consumption constraints [77]: a practical time limit

of 6 × 10
5
seconds and a shot limit of 10

7
to mirror the limitation of the high cost of quantum

computer execution. We used ADAPT-QSCI from [63] and QCELS from [18].

Each QE can run in a classical mode (an exact classical simulator) or an evaluation mode (an
approximate quantum simulator). We restricted classical mode runs to a maximum of 16 qubits due to

high computational complexity. Evaluation mode uses matrix product states (MPS) [6, 67, 105, 106]

to store the system state more efficiently, enabling time- and memory-efficient simulation of larger

systems, but at the cost of some approximation error.

A QE takes number_qubits, the flag is_classical (set to True during data collection and True
or False otherwise), and 𝜽 as defined in §2. It outputs the system’s lowest energy prediction as a

Python float (17-digit precision). Each QE uses fixed default hyperparameters (𝜽 vector), which

differ between implementations and include the compressed, flattened Hamiltonian. 𝜽 vectors must

have a consistent length for the Python XGBoost library. Before training, vectors are padded to

a predefined maximum length, split into training and testing sets, and then trained, tested, and

evaluated. AccelerQ takes a QE implementation with its required inputs.

AccelerQ leverages Python’s ability to pass functions as arguments, allowing it to accept QE

implementations and their hyperparameter generators as inputs. The data augmentation, model

training, and optimisation steps are implemented in Python and can work with any such QE

implementation, although a wrapper and manual definition of constants as a hyperparameter

problem are currently required. This modularity enables straightforward extension to other QEs,

including those with hardware backends or simulator interfaces in C/Java, which we identify as

promising future work.

6 Evaluation

We evaluated AccelerQ’s ability to further optimise ADAPT-QSCI and QCELS implementations,

given a QE implementation and a system-specific Hamiltonian as input.

6.1 Methodology

Configurations. We consider three configurations in our evaluation of AccelerQ:

(1) Baseline. Executes QE implementations with fixed default hyperparameters.

(2) ML-Only. AccelerQ operates only with the QE predictor, excluding §4.2 and §4.5.

(3) Full AccelerQ. The complete approach as described in §4.

DEFAULT (Configuration 1) executes the QE implementations with their default hyperparameters,

which are fixed across all systems and are as in [18, 63]. OPT-ML-Only (Configuration 2) excludes

the use of genetic algorithms and hyperparameter tests and serves as a weaker variant of AccelerQ:
technically, we generated random seeds for the same number of iterations and selected the one

with the minimum score, no tests and no mutations.

7
https://pypi.org/project/quri-parts/
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Table 1. Parametrisation of ADAPT-QSCI and QCELS hyperparameters. # is the number of items.

Parameter Type Range Default Description

ADAPT-QSCI Hyperparameters
num_pickup int [50, 10

3
] 100 Controls #terms retained in the compressed Hamiltonian.

coeff_cutoff float [1e-8, 1e-2] 0.001 Complimenting num_pickup: Hamiltonian terms with co-

efficients below it are excluded.

self_selection bool True, False False If True, forces working in subspace.

iter_max int [10, 10
5
] 100 Maximum iterations for the algorithm.

sampling_shots int [10, 10
6
] 10

5
#sampling shots for measurements per iteration.

atol float [1e-8, 1e-4] 1e-6 Absolute tolerance for convergence criteria.

final_sampling_shots_coeff int [1, 9] 5 How many more shots to use in the calculation if the same

operator appears twice or operator parameter is close to 0.

num_precise_gradient int [35, 300] 128 #operators from pool to calculate gradient more precisely.

reset_ignored_inx_mode int [0, 100] 0 #iterations to pass before reusing an operator in ansatz.

QCELS Specific Hyperparameters
ham_terms int [50, 10

3
] 200 #terms retained in the Hamiltonian after truncation.

ham_cutoff float [1e-8, 1e-3] 1e-9 Same as coeff_cutoff in ADAPT-QSCI.

delta_t float [1e-3, 0.3] 0.03 Time step for the simulation or evolution of the system.

n_Z int [5, 25] 25 #points used in fitting the time evolution.

alpha float [0.5, 1] 0.8 Scalar to control parameters’ weight in Equation 2.

Experimental Procedure. We trained two QE predictor models—one per QE implementation—on

data from classically simulable systems up to 16 qubits. These models were then deployed to

optimise 16 larger Hamiltonians of 20, 24, and 28 qubits with known lowest eigenvalues, using the

ADAPT-QSCI and QCELS implementations (§3). The process used a QE implementation, its trained

model, and a system (Hamiltonian) and returned optimal hyperparameters. We then assessed the

performance with Configurations 1-3 and addressed 𝑅𝑄s 1-4 stated in the Introduction (§1).

6.2 Experimental Setup

We describe below the experimental setup for the preparation of QE implementations and A , B ,

C and D in Figure 5 in §4.

Source of Hamiltonians. We use two sources of Hamiltonians: (1) QunaSys’s datasets8 [75, 77],
and (2) commonly used open-source molecular Hamiltonians, including H2O, LiH, BeH2,

Hemocyanin [3], and Hydrogen chain. Evaluation was performed on 20-, 24-, and 28-qubit Hamil-

tonians using predictions trained on smaller systems. Due to the high cost of quantum hardware

and the long runtime of QEs on 20+ qubits in the NISQ QC, all testing was done in simulation.

Data Augmentation. We extracted 66 files in a classical mode. ADAPT-QSCI produced 4,760 records

(757 MB), while QCELS, being more efficient on smaller systems, yielded 14,510 records (4868 MB),

including 400 and 5,550 records respectively from source (1) Hamiltonians and the rest from source

(2). For 4- 6-, 7-, 8-, 10-, 12-, 14- and 16-qubit systems, we utilised 60, 750, 500, 500, 1500, 450, 800

and 200 records for ADAPT-QSCI hyperparameters, and 60, 750, 500, 500, 1000, 6600, 2100 and 3000

for QCELS hyperparameters, respectively.

Parameterisation. The ADAPT-QSCI and QCELS implementations [18, 63] include default hy-

perparameters controlling their operation, used as a baseline for comparison in our evaluation

(i.e. DEFAULT). We summarised these in Table 1. All parameters of both implementations follow a

uniform distribution, except iter_max and sampling_shots, which follow a custom multi-tiered

8QunaSys’s Hamiltonians: 4 and 12 qubits for seeds __00 to __04, and of 20 and 28 qubits for seeds __00 to __04.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 354. Publication date: October 2025.



354:16 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

Table 2. Hyperparams. Tests of ADAPT-QSCI & QCELS Impl.; S: Static tests; SD: Semi-dynamic tests.

#Test Impl. Type Relevant Hyperparameters Description of the Test

1 ADAPT-QSCI S iter_max, sampling_shot No overshooting or using >1000 iterations.

2 Both SD num_pickup, coeff_cutoff, or

ham_terms, ham_cutoff

Compressed Hamiltonian size is reduced meaning-

fully.

3 Both SD same as #2 Checks if cut-off value is effective in reducing terms:

this is similar to #2, but set ham_terms to be the max-

imal (i.e. #terms in the original system).

4 Both SD num_pickup or ham_terms num_pickup is reasonable based on Hamiltonian size.

5 QCELS S n_z n_z is in [5,30].

6 ADAPT-QSCI S self_selection, system type Checks self_selection is sensibly set based on

Fermionic and particle-conserving properties.

7 ADAPT-QSCI S self_selection, iter_max, re-

set_ignored_inx_mode

If self-selection is enabled, max iterations exceed reset

iterations.

8 QCELS S delta_t delta_t is within a reasonable range.

9 QCELS S alpha alpha is in [0.5,0.9] for stability.

distribution that uniformly at random picks 10
𝑖
, and then uniformly samples an Integer in [10

𝑖
,

10
𝑖+1

]. We set the hyperparameter ranges to fit the physical problem context. For QE predictor, we
defined 𝑥 ∈ 𝑋 vector as the compressed Hamiltonian (by removing terms with absolute coefficients

below 0.05) and its hyperparameters, normalised to the size of 28-qubit systems. The 𝑦 ∈ 𝑌 vector

is the predicted lowest eigenvalue, yet the 𝑦s values are relative approximations (i.e. the 𝑦s values
are approximations that capture relative relationships rather than absolute meaningful values).

Default Values. Default values (Table 1, Default column, DEFAULT Configuration) were overridden
when using AccelerQ suggestions tailored per Hamiltonian system using values drawn from the

range (Range column, Configurations OPT-ML-Only and FULL-AccelerQ).

Tests. We wrote a set of tests for ADAPT-QSCI and QCELS summarised in Table 2, including the im-

plementation and the hyperparameters the test is relevant to (Impl. and Relevant Hyperparameters

columns), the type of the tests (static or semi-dynamic test; Type column), and the test description

(Description of the Test column).

Model Extraction. QE predictor models’ sizes were 1.1 MB for ADAPT-QSCI and 2.86 MB for

QCELS, trained with data extracted on an exact classical simulator from up to 16-qubit systems.

Machine Setup.Models were trained using XGBoost (XGBRegressor, v2.1.1) on a single GPU core,

NVIDIA 12GB PCI P100 GPU, 12 GB VRAM, running Ubuntu 22.04.4 LTS [26]. Simulations and

model deployment ran on a virtual machine with Ubuntu 20.04.2 LTS (x86_64), hosted on a single-

socket AMD EPYC 7313P CPU (3.0 GHz, 16 cores, 2 threads/core). Training data was collected and

processed entirely on a CPU.

7 Results

We now evaluate AccelerQ’s ability in optimising hyperparameters of QE implementations to im-

prove accuracy and efficiency across 16 Hamiltonian systems.We analysed results for QE predictor
deployment to generate new hyperparameters suggestions ( E , Figure 5) in §7.1, and execution

of QE implementations with these hyperparameters ( F , Figure 5) in §7.2. Model deployment ran

on an exact classical simulator, while QEs execution with optimised hyperparameters used an

MPS-based quantum simulator (§5). Full data and tables are available in our artifact §12.
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7.1 𝑅𝑄1: Model Deployment

We deployed the two models on 16 Hamiltonian systems (§6.2). Figure 6 (ADAPT-QSCI) and Fig-

ure 7 (QCELS) present the hyperparameter values under three configurations: DEFAULT (DEF),

OPT-ML-Only (OPT), and FULL-AccelerQ (TEST). The x-axis labels these configurations for each
hyperparameter. The default hyperparameters (DEF) are listed in Table 1, while OPT and TEST val-

ues were obtained using OPT-ML-Only and FULL-AccelerQ configurations, respectively. Columns

A–I correspond to the predicted optimal hyperparameters for ADAPT-QSCI, and Columns A–E for
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Fig. 6. ADAPT-QSCI’s Hyperparameters: Default (DEF) vs predicted values. (i)’s Y-axis in log scale,
log

10
. X-axis labels: A: num_pickup, B: coeff_cutoff, C: self_selection, D: iter_max, E: sampling_shots, F: atol,

G: final_sampling_shots_coeff, H: num_precise_gradient & I: reset_ignored_inx_mode.
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QCELS. Note that the value presented in Figure 6 for the predicted iter_max was capped during

execution
9
to ensure that we do not have unlimited resources.

Figure 6 shows that OPT and TEST generally select higher values than DEF, except for stopping-

related parameters (final_sampling_shots_coeff and num_precise_gradient), which remain

closer to DEF. OPT typically reduced per-iteration precision, lowering sampling_shots while in-

creasing atol, coeff_cutoff, and iter_max, leading to more total iterations. When both iter_max
and sampling_shots were pushed to maximum values, ignoring their correlation, execution was

capped, resulting in fewer iterations in practice. TEST did not exhibit this behaviour: it generally

increased shots per iteration while keeping iteration counts moderate. Except that, TEST commonly

aligned around the same range of values as OPT but aligned more with DEF on self_selection
and iter_max, likely due to the constraints imposed by the hyperparameters tests, and consistently

favoured higher final_sampling_shots_coeff, improving prediction quality.

Figure 7 shows that OPT tended to select higher values for n_z and delta_t, with no clear

preference for alpha and favoured increasing the number of terms retained in the Hamiltonian

(except for 20qubits_01 and 20qubits_03). This may seem to be contradicted by also favouring larger

ham_cutoff values to decrease the number of terms retained in the Hamiltonian. Yet, for systems

at this scale, the ham_cutoff value was always small enough to remove no additional terms beyond

those excluded by ham_terms. TEST was generally aligned with OPT but utilised a narrower value

range, often selecting from the higher end. Exceptions were ham_terms and alpha, where TEST
chose values lower than OPT and DEF.

Hamiltonian Systems Size. The QE implementations truncate Hamiltonians based on hyperparam-

eters such as coefficient cutoff and number of terms (Table 1). Thus, the choices in Figure 6 and

Figure 7 under DEF, OPT, and TEST affected Hamiltonian size, which vary in their initial size and

complexity (§6.2). We examined this effect to reveal structural differences and assess the relative

difficulty of problem instances.

Figure 8 shows the individual number of terms in eachHamiltonian system in FermionOperator10

format (”#terms” line) and the number of terms utilised in the QE predictor models during data

augmentation, training and deployment of the models (”Reduced size for ML” line). The remaining

lines capture sizes after the Jordan–Wigner transformation [65], including both the untruncated

Hamiltonian (“Hamiltonian QP size”) and its truncated form under the three hyperparameter con-

figurations (DEF, OPT, TEST) of ADAPT-QSCI and QCELS. The ML pipeline used different cutoffs

and compression than the Jordan–Wigner ones. Open-source molecular Hamiltonians are marked

with an asterisk. Across all Hamiltonian representations in Figure 8, the open-source molecular

Hamiltonians contain far fewer terms (≤ 46) than the QunaSys Hamiltonians (≥ 54𝑘). Even after

compression, the molecular Hamiltonians remained much smaller, indicating structural differences

between the sets.

𝑅𝑄1 Answer. We observed clear shifts in hyperparameter values. In ADAPT-QSCI, OPT and

TEST typically increased coeff_cutoff and iter_max, but TEST increased sampling_shots
to kept iter_max moderate. In QCELS, OPT and TEST raised ham_cutoff but aimed to retain

more Hamiltonian terms similar to DEF. These effects were pronounced on large QunaSys

Hamiltonians (≥ 54𝑘 terms) than on smaller open-source ones (≤ 46 terms).

9
The platform automatically stopped the computation once the maximum number of shots, 10 000 000, was reached, which

is iter_max=1e7/sampling_shots; same limitation of the maximum number of shots applied to QCELS and is common in

quantum platforms.

10
the chemistry form, https://github.com/quantumlib/OpenFermion/tree/master
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Fig. 9. Comparison of ADAPT-QSCI and QCELS, with 3 different configurations for each.

7.2 𝑅𝑄2–𝑅𝑄5: Execution with Different Hyperparameters

We ran six experiments in total, using the DEF, OPT, and TEST values of hyperparameters from

𝑅𝑄1 for ADAPT-QSCI (Figure 6) and QCELS (Figure 7), as follows:

• ADAPT-QSCI – Configuration 1. ADAPT-QSCI with default hyperparameters (DEFAULT).
• ADAPT-QSCI – Configuration 2. ADAPT-QSCI with OPT-ML-Only predicted hyperparameters.

• ADAPT-QSCI – Configuration 3. ADAPT-QSCI with AccelerQ as in §4 (FULL-AccelerQ).
• QCELS – Configuration 1. QCELS with default hyperparameters (DEFAULT).
• QCELS – Configuration 2. QCELS with OPT-ML-Only predicted hyperparameters.

• QCELS – Configuration 3. QCELS with AccelerQ as in §4 (FULL-AccelerQ).

Each experiment was repeated 10 times to account for variance, with the best-performing (lowest

valid) result reported. FULL-AccelerQ was executed only twice per Hamiltonian system—far fewer

opportunities for improvement—placing it at a disadvantage compared to other configurations.

This limitation was necessary due to the high computational cost: evaluating a single Hamiltonian

with 10 repetitions can take ≈ 2 months on CPU
11
. Overall, these settings (2 QE implementations ×

3 configurations, repeated 10 or 2 times) yielded 16 × 2 × 2 × 10 + 16 × 1 × 2 × 2 = 704 executions,

enabling a systematic comparison across Hamiltonians, configurations, and algorithmic behaviours.

Figure 9 summarises the results of executing ADAPT-QSCI and QCELS on a quantum simulator.

We evaluated 16 Hamiltonians of 20-, 24-, and 28-qubit systems (x-axis). Results for 28-qubit QCELS

are intentionally omitted, as they appeared to be likely invalid, discussed further in §8. Error rates

in Figure 9(iii) are reported only for QunaSys Hamiltonians, since reference values for open-source

molecular Hamiltonians were unavailable at the time of the experiments. At that stage, we operated

with is_classical:=False (see §5). We evaluated three metrics:

• Figure 9 (i) reports the minimum energy level estimated;

11
GPU runs could have reduced runtime substantially, but we had access only for a few days, insufficient for full experiments.
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• Figure 9 (ii) presents the number of iterations required to reach estimation;

• Figure 9 (iii) shows the error rate in %, computed for Hamiltonians with known solutions [75, 77].

Figure 9 (i) shows that default parameters (DEFAULT) performed better for the open-source

molecular Hamiltonian systems (≤ 46 terms), while QunaSys’s Hamiltonians (≥ 54, 000 terms)

performed better with the AccelerQ optimisation (Configurations 2-3). QunaSys’s datasets (10

systems): ADAPT-QSCI Configuration 2 achieved the best result in five Hamiltonian systems,

followed by ADAPT-QSCI Configuration 3 in four Hamiltonian systems, and QCELS Configuration

2 in one Hamiltonian system. No other configurations, including the defaults, achieved top perfor-

mance. Dataset of commonly used open-source molecular Hamiltonians (6 systems): ADAPT-QSCI

Configurations 1 and 2 performed best for system 24qubits_06, ADAPT-QSCI Configuration 3 for

20qubits_05 and ADAPT-QSCI Configuration 1 for the rest of the four systems.

Figure 9 (ii) presents the number of iterations used by each QE implementation to approximate the

lowest eigenvalue. All executions remained below 150 iterations, even when higher iteration counts

were permitted by the hyperparameter settings (shown in Figure 6 and Figure 7). In general, QCELS

required fewer iterations on average, 9.0 for Configuration 1 (DEFAULT), 13.69 for Configuration
2 (OPT-ML-Only), and 13.69 for Configuration 3 (FULL-AccelerQ), compared to ADAPT-QSCI,

which averaged 51.25, 41.31, and 50.37, respectively. While this reflects the fundamentally different

nature of the two algorithms, FULL-AccelerQ commonly required slightly more iterations than

OPT-ML-Only.

Figure 9 (iii) presents the error rate for QunaSys’s datasets (10 systems). For 20-qubit systems,

ADAPT-QSCI Configuration 3 (FULL-AccelerQ) achieved the lowest average error at 3.77%, fol-

lowed by ADAPT-QSCI Configuration 2 (OPT-ML-Only) at 4.20%, and ADAPT-QSCI Configuration

1 (DEFAULT) at 4.46%. Whereas QCELS OPT-ML-Only reached 6.55%, while DEFAULT had 7.55%, and

FULL-AccelerQ showed negligible improvement against the default, with an average error of 7.52%.

For the 28-qubit systems, we excluded QCELS due to instability at this scale (see §8). ADAPT-QSCI

FULL-AccelerQ achieved the lowest average error at 6.32%, followed by OPT-ML-Only at 6.39%,

and DEFAULT at 6.51%.

Answer to 𝑅𝑄2: Ability of Optimisation via ML alone to Accelerate and Improve QE Executions
(Configuration 1 vs Configuration 2). Results indicate that Configuration 2 (OPT-ML-Only) provides
limited improvements when generalising from small (≤16 qubits) to larger (20–28 qubits) systems.

While it outperformed its default counterpart (DEFAULT) on certain QunaSys Hamiltonian systems,

the improvements in accuracy remained relatively modest. These findings suggest that while

generalisation is possible, its effectiveness depends on the Hamiltonian’s complexity and structure.

(QunaSys’s datasets, 20-qubit) OPT-ML-Only exhibited greater error variability (0.83%–8.53%)

compared to DEFAULT (4.28%–10.14%). While QCELS OPT-ML-Only achieved the lowest error (0.83%)
within just seven iterations for 20qubits_01 system, ADAPT-QSCI OPT-ML-Only performed bet-

ter in other cases. (Open-source datasets, 20qubits_05 and 24-qubit) ADAPT-QSCI DEFAULT
outperformed all other configurations, suggesting that for Hamiltonians with relatively few terms,

hyperparameter tuning does not enhance accuracy. (QunaSys’s datasets, 28-qubit) ADAPT-
QSCI OPT-ML-Only outperformed DEFAULT, often achieving error reductions of an order of mag-

nitude. In contrast, DEFAULT showed only marginal advantages in cases where they outperformed

OPT-ML-Only (e.g. 0.x vs. 0.0x error differences), suggesting that hyperparameter optimisation can

lead to substantial accuracy gains, even if not universally superior to defaults.

𝑅𝑄2 Answer. OPT-ML-Only showed limited overall gains, performing better primarily with

Hamiltonians containing hundreds of terms. Likely, a more refined model incorporating Hamil-

tonian characteristics may be necessary for assessing the impact of optimisation.
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Answer to 𝑅𝑄3: Assessing additional efforts beyond ML (Configuration 2 vs Configuration 3). Our
evaluation shows that Configuration 3 (FULL-AccelerQ) generally outperforms Configuration 2

(OPT-ML-Only) in terms of error rate, though it does not always achieve the best result. ADAPT-
QSCI: FULL-AccelerQ achieved the lowest error rates for QunaSys’s datasets: 3.77% (SD ±0.8)
and 6.32% (SD ±0.32), for 20- and 28-qubit systems, respectively, surpassing OPT-ML-Only: 4.20%
(SD ±1.71) and 6.39% (SD ±0.24). QCELS: FULL-AccelerQ did not yield any gains, possibly due

to either hyperparameter values or hyperparameter tests not significantly affecting how QCELS

internally operates; for 20-qubit systems, FULL-AccelerQwas 7.52% (SD ±1.87) while OPT-ML-Only
was 6.55% (SD ±3.27). This was unexpected: we implemented QCELS ourselves and expected greater

control over its behaviour, unlike ADAPT-QSCI, whose implementation details were less familiar

to us. Yet, ADAPT-QSCI is designed for NISQ devices with tunable parameters that expose more

learnable patterns, while QCELS is less sensitive to initialisation and more constrained by physics-

based evolution, reducing the benefits of FULL-AccelerQ. For open-source datasets, results were
inconclusive: OPT-ML-Only outperformed FULL-AccelerQ in some cases, and vice versa.

𝑅𝑄3 Answer. FULL-AccelerQ showed more consistent performance, with its genetic algorithm

and test filtering refining hyperparameter selection, with conclusive improvements across com-

plex Hamiltonians with hundreds of terms. For open-source datasets of Hamiltonians with ≤ 46

terms, however, no consistent gains were observed with either OPT-ML-Only or FULL-AccelerQ.

Answer to 𝑅𝑄4: Scalability of Configurations 1, 2 and 3. We compare the performance of all three

configurations (DEFAULT, OPT-ML-Only, FULL-AccelerQ) to draw overall conclusions about their

effectiveness and scalability. Scalability was assessed by measuring iteration counts and error rates

(only for QunaSys datasets) of Hamiltonian systems of increasing size.

ADAPT-QSCI: OPT-ML-Only required fewer iterations on average than FULL-AccelerQ or

DEFAULT (see Figure 9 (ii) discussion), with a general trend of using fewer iterations as the number

of qubits increased from 20- to 28-qubits, indicating manageable scaling. We observed a reduction

in error from 5.48% (SD ±1.09) of the defaults to 5.3% (SD ±1.63) with OPT-ML-Only and further to

5.05% (SD ±1.46) with FULL-AccelerQ. With respect to the system’s size, error rates, however, rose

from ∼ 2–5% to ∼ 6–7% (Figure 9 (iii)). QCELS: Iteration counts were low across configurations

(Figure 9 (ii)) with no clear trend. For 20-qubit, OPT-ML-Only optimisation yielded limited error

reduction, from 7.5% (SD ±1.85) to 6.5% (SD ±3.27), with no gain with FULL-AccelerQ for QCELS.

In 28-qubit systems, AccelerQ failed to scale, as discussed in detail in §8.

𝑅𝑄4 Answer. Compared to ADAPT-QSCI DEFAULT, OPT-ML-Only generally reduced the iteration
count, whereas FULL-AccelerQ slightly increased it but delivered higher accuracy. By contrast,

QCELS OPT-ML-Only and FULL-AccelerQ raised the iteration count by about 52% (from 9 to

13.69), though the values remain within a sensible range. DEFAULT configurations showed the

lowest variance, offering stability at the expense of accuracy, while both OPT-ML-Only and

FULL-AccelerQ reduced error rates, indicating the potential of optimisation.

Answer to 𝑅𝑄5. The results show that variance in the final energy in QE implementations across

Hamiltonians tends to decrease for QunaSys’s dataset and to increase for the open-source datasets

as system size increases. A similar trend was observed in error rates. Overall comparisons of the

three configurations (DEFAULT, OPT-ML-Only, FULL-AccelerQ) were presented earlier (Figure 9).

Here, we analyse the results per QE separately to highlight additional trends. ADAPT-QSCI:
Across the benchmarked Hamiltonians, the three configurations achieved 5, 6, and 6 wins for

DEFAULT, OPT-ML-Only, and FULL-AccelerQ, respectively. This indicates that while OPT-ML-Only
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Fig. 10. The original high-frequency fit uses a pe-
riod of approximately the spacing between the data.
Damped oscillations were observed in the simulated
quantum algorithm’s output.

Fig. 11. An updated fitting procedure which pre-
vents high frequency fits, but does not significantly
improve the results in this case because of the error
in the collected time evolution data.

and FULL-AccelerQ often outperformed the defaults, no single configuration dominated consis-

tently across all systems. Instead, the advantage appears to depend on the Hamiltonian characteris-

tics, with FULL-AccelerQ showing slightly stronger error rates than OPT-ML-Only, as discussed
in 𝑅𝑄3. QCELS, 20- & 28-qubits: The corresponding win counts were 2, 7, and 2 for DEFAULT,
OPT-ML-Only, and FULL-AccelerQ. Here, OPT-ML-Only clearly outperformed the other two con-

figurations, suggesting that unconstrained hyperparameter optimisation had the strongest impact

in this implementation (discussed already in 𝑅𝑄3). QCELS failed to scale effectively to 28-qubit

systems as discussed in §8.

Furthermore, several Hamiltonian systems (particularly from the QunaSys dataset) were sensitive

to non-default hyperparameters, occasionally crashing the ADAPT-QSCI and QCELS implementa-

tions. This can impact the reproducibility of specific best results tied to particular hyperparameter

values. Nevertheless, given the significant overall reduction in error rates, even slight variations in

hyperparameters are still likely to improve outcomes over the default configuration. We expand on

these issues in §9.

𝑅𝑄5 Answer. Overall, the results remain inconclusive, with observed differences driven more by

the underlying QE implementation and Hamiltonian system complexity than by the optimisation.

8 Discussion

Scalability analysis of the optimisation procedure is hampered by the limitations of current quantum

platform simulators. Beyond comparing the results to known reference values, we also examined

the underlying fitting process to assess whether the observed outcomes were achieved for the right

reasons, rather than by chance, as happened with 28-qubit systems from the QCELS results. We

excluded these results and elaborated on the findings that led to this decision.

For larger system sizes, the time to evaluate a large circuit can quickly become prohibitive for

running many algorithm iterations, even with access to large compute resources and sufficient

memory to store the system’s state. These challenges prevented the successful evaluation of the

QCELS implementation at 28 qubits with a strong damping effect on the oscillations of time evolving

expectation value. Possible causes of such an effect could include the Trotter error [83, 88] introduced

by the implementation of the Hamiltonian evolution unitary or the truncation of entanglement
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between qubits in theMatrix Product State (MPS) simulator [6, 67, 105, 106]. The results we obtained

when using 28 qubits in the MPS simulator are shown in Figure 10, a decay of the oscillation can be

observed in the data which results in an erroneous fit with a frequency close to that of the spacing

between the data points. In Figure 11, we forbid a fit with a period smaller than the spacing of

the data, however, the decay of the oscillations continues to prevent a good fit to the data. QCELS

provides an elegant approach to solving a Hamiltonian by its direct encoding of time evolution, but

its performance is highly sensitive to simulation fidelity and algorithmic discretisation, making it

difficult to tune. In comparison, the ADAPT-QSCI implementation continues to work well up to 28

qubits, with its formulation as a classical solver acting in a subspace defined from the measurements

on a quantum computer being well suited to working at these moderate system sizes. This approach

also works well at mitigating the impact of inexact quantum evolution from noise on a quantum

device or error in the classical simulation of the quantum algorithm.

9 Threats to Validity

Internal Validity. Our results are subject to several internal threats. First, we observed that QE

implementations are sensitive to the Python environment. Minor differences in library versions

could lead tomisleading evaluation and results; e.g.with ADAPT-QSCI and program seed 24qubit_07:

we observed that the total number of iterations was too low (i.e. #4). When reverting
12
the Python

libraries this number became sensible (i.e. #21). Second, the QE implementations were not always

able to support all hyperparameter values, resulting in execution failures; e.g. Python execution

was out-of-resources with ADAPT-QSCI (24qubit_07) or a segmentation fault occurred with QCELS

(20qubits_04) and ADAPT-QSCI (20qubits_03) in the quantum simulator
13
. We carefully documented

and controlled these environments to mitigate such issues, including a Docker container and a

requirement file. We reran failed cases to obtain the required number of successful runs in our

evaluation. Lastly, we tested AccelerQ beyond the final output of the QE implementations because

even when the predicted lowest eigenvalue appears low and within acceptable bounds, it may stem

from the wrong reasons, as discussed in §8.

External Validity. Challenges in understanding quantum information and the limited availability

of suitable datasets, even after data augmentation, make it difficult to predict when and how ML

generalisation will succeed. Nonetheless, ML predictions can significantly optimise costly quantum

executions and improve the accuracy of the results. Further, the generalisability of our findings is

constrained by the use of a quantum simulator, which may not fully reflect real-world quantum

hardware behaviour in terms of cost and noise. In our evaluation, we restricted quantum resources

in simulation to mirror better quantum hardware (§5), but more sophisticated and realistic quantum

simulators (general behaviour and noise) are required.

Transferability. AccelerQ is adaptable to different datasets, with the primary limitation being the

Hamiltonian size. Our approach can be ported to other platforms, provided they are open-source
14

and, modulo some modifications. These, however, required appropriate input: 1) Adapting to other

QE implementations requires a hyperparameters generator tailored to the target implementation,

re-running the full pipeline of data augmentation and model training, which is also implementation-

specific; and 2) Adapting to other problem domains requires a set of small Hamiltonian systems

(typically less than 16 qubits) relevant to that domain, with classically computed solutions for

training. Additionally, as discussed in the internal validity section, we observed that QE implemen-

tations are sensitive to Python package versions. Even minor version mismatches (e.g. in xgboost,

12
We reverted xgboost, scikit-learn, numpy, cirq and qiskit to be 2.1.0, 1.5.0, 1.23.5, 1.1.0 and 0.41.1.

13
This error came from a method call to add_single_qubit_gate in quri_parts.

14
When selecting a quantum platform, consider this requirement and its compatibility and transferability to other platforms.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 354. Publication date: October 2025.



354:24 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

numpy, or qiskit) can lead to unoptimised behaviour. Therefore, pinning package versions and

containerisation (e.g. via Docker) are required for reproducibility. More general recommendations

related to reproducibility are summarised below.

ML holds significant potential for optimising quantum calculations but remains non-trivial. A key

limitation we identified is the absence of unified quantum datasets tailored for training ML models;

developing such datasets would greatly benefit future research and improve the transferability of

ML-based approaches like AccelerQ.

Training, deploying and evaluating a model directly with the Hamiltonian representation of

quantum systems appears promising. However, small variations in the quantum training data

significantly impacted model performance. It is therefore crucial to validate datasets with expert

knowledge. For instance, cut-off strategies and padding with zeros for Hamiltonian systems with

fewer than 100 terms performed poorly due to sparsity (as in §7). Further, training on datasets

with varying numbers of qubits substantially influenced results (like in §8). A deeper investigation

into the properties required for validating quantum datasets would benefit industry and academia.

Another key challenge is the limited availability of comprehensive noise data from quantum

hardware, restricting the ability to transition from simulation to real hardware.

10 Related Work

Challenges in Quantum Computing. QC was conceptualised initially to simulate quantum mechanics

using computers “built of quantum mechanical elements which obey quantum mechanical law” [31].
Later, it was found that QC could have several potential applications and offer significant speed-up

over classical computing [7–9, 13, 23, 37]. In 1994, Shor’s proposal of a polynomial-time algorithm

for prime factorization and discrete logarithms on a quantum computer raised enormous interest

due to its potential threat to modern RSA cryptosystems [81]. Soon after, Grover introduced a

fast database search on quantum computers [37] that promised quadratic speed-up over the best

classical algorithm. The resulting potential speed-up is often referred to as “quantum supremacy”

[5]. Several studies apply SE techniques to optimise quantum computing [33, 35]. Noticeably, testing

[60, 82], debugging [58, 68, 80], verification [52, 100] approaches, and efficient synthesis techniques

[47, 69, 90] have been found to be beneficial in quantum software development [60, 68, 82, 100].

Demonstrating quantum supremacy on real hardware remains a long-standing challenge, es-

pecially at a scale where quantum devices would solve real-life calculations. Although quantum

supremacy seems difficult to achieve soon, NISQ algorithms—Imperfect hardware is often called

Noisy Intermediate-Scale Quantum (NISQ) devices—are a prominent example that hybrid systems

combining small quantum circuits with classical computations could present some computational

advantages, i.e., a quantum advantage [72]. Most agree this stage of QC will likely last for the next

few years if not decades, and refer to it as the NISQ era [72]. Variational Quantum Algorithms (VQA)

are the most common example of an efficient combination of a reduced quantum circuit inside a

classical optimisation loop [87]. Other algorithms use classical optimisation to enhance quantum

calculations, such as QCELS [24, 25] that uses a fitting procedure to extract information from

quantum calculations. Because of their prominent role in modern Quantum Computing research

and industrial applications, we chose to focus our study on Variational and QCELS Algorithms.

Machine Learning for Quantum Software Engineering. ML algorithms are increasingly used to

improve and automate SE tasks [27, 39, 79, 92, 94, 95, 101, 104], especially after the advent of

Large Language Models (LLM), with common applications in SE, including optimisation, code

generation, bug detection and automated testing [11, 14, 21, 28, 45, 91]. Furthermore, connections

between ML and QC have been broadly explored, both to optimise ML with QC and to optimise

QC with ML [30, 70, 93]. Yet, the applications of ML in QC [78] remain a very new and open
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field of research. While quantum machine learning (QML) offers potential speedups in ML tasks

[89], very recent work also demonstrates promising results in applying ML to optimise quantum

computations [16, 53]. Nevertheless, these methods are usually applied on the quantum circuit

itself, rather than the quantum implementation (or the program), on a few qubits [53], and are not

Hamiltonian-specific. Even approaches that leverage Hamiltonian information within variational

eigensolvers [64] remain limited to QE-specific hyperparameter tuning. AccelerQ takes a different

approach from common QE optimisation methods—that either optimise without incorporating

the target Hamiltonian into the process or are restricted to fixed system sizes [16, 86, 102], or

rely on manual code rewriting, or even complete reimplementation, in the hope of improving

performance [76, 77])—by integrating the Hamiltonian into the optimisation process, scaling beyond

few-qubit systems, and avoiding relying on manual reimplementation.

11 Conclusion

In this paper, we presented an interdisciplinary approach that merges SE and ML paradigms to

enhance the performance of quantum algorithms using quantum simulators. We designed and

implemented a new framework, AccelerQ, as a prototype tool to predict near-optimal hyperpa-

rameters for quantum algorithms. We evaluated AccelerQ on two implementations (ADAPT-QSCI

or QCELS), training and deploying relatively small-scale models to improve performance by sug-

gesting better hyperparameters. Our results suggest that the model’s predictive ability depends on

the Hamiltonian’s characteristics rather than solely on a specific implementation.

Beyond optimising complex quantum simulations, AccelerQ also provides deeper insights into

the underlying physics of the studied systems. For instance, by tuning the number of relevant terms

of the Hamiltonians (through coefficient cut-off points), we can identify relevant correlation terms.

Future Work.While our evaluation includes three representative configurations (FULL-AccelerQ,
OPT-ML-Only, DEFAULT) for an initial ablation study, we acknowledge the absence of broader

empirical comparisons with prior work. Each full configuration requires 3-6 months of computation

across multiple CPU machines, which constrained our ability to explore the experimental space

exhaustively. Expanding the comparative evaluation to include other methods and variants is a

direction for follow-up work.

Besides comparison against similar methods and other variational algorithms’ implementations

when experimentally possible, this methodology could be extended to inferring more complex

chemistry-related terms, such as the ansatz, a key bottleneck in quantum chemistry simulations.

Fine-tuning these properties is particularly challenging, as small structural changes can significantly

impact the quality of quantum simulations. Addressing this complexity requires optimisation beyond

hyperparameters, suggesting that ML could play a broader role in refining quantum algorithm

execution at multiple levels. The method presented in this work represents an early step toward

this direction and may pave the way for integrating ML and quantum algorithms into more robust

and scalable QC applications.

12 Data Availability Statement

Software, setups, and datasets are on Zenodo [10]. The artifact, deemed

reusable by the AEC, includes modular code, partial evaluations, full pipelines, pre-trained models,

scripts, Docker for reproducibility, and guidance on reproducing results with other QE implemen-

tations, in addition to those presented here.
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