Check for
updates

R DIGITAL Assacition for
acvgel® 155 ARy T @mopen}
£ Latest updates: https://dl.acm.org/doi/10.1145/3763132

RESEARCH-ARTICLE
AccelerQ: Accelerating Quantum Eigensolvers with
Machine Learning on Quantum Simulators

AVNER BENSOUSSAN, King's College London, London, U.K.

I am a PhD Candidate in Computer Science at King’s College London.
My research focuses on understanding faults in Hybrid Quantum-
Classical architectures and on developing foundational methods for
robust and reliable quantum software. In particular, | investigate
applications of quantum information theory to the testability and
verification of quantum and hybrid software architectures.

ELENA CHACHKAROVA, King's College London, London, U.K.
KARINE EVEN-MENDOZA, King's College London, London, U.K.
SOPHIE FORTZ, King's College London, London, U.K.

CONNOR LENIHAN, King's College London, London, U.K.

Open Access Support provided by:
King's College London

PDF Download
}3 3763132.pdf
. 19 January 2026

Total Citations: 0
Total Downloads: 158

Published: 09 October 2025
Accepted: 12 August 2025
Received: 26 March 2025

Citation in BibTeX format

Proceedings of the ACM on Programming Languages, Volume 9, Issue OOPSLA2 (October 2025)

https://doi.org/10.1145/3763132

EISSN: 2475-1421

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3763132
https://dl.acm.org/doi/10.1145/3763132
https://dl.acm.org/doi/10.1145/contrib-99661375063
https://dl.acm.org/doi/10.1145/institution-60011520
https://dl.acm.org/doi/10.1145/contrib-99661719558
https://dl.acm.org/doi/10.1145/institution-60011520
https://dl.acm.org/doi/10.1145/contrib-99659155996
https://dl.acm.org/doi/10.1145/institution-60011520
https://dl.acm.org/doi/10.1145/contrib-99659853208
https://dl.acm.org/doi/10.1145/institution-60011520
https://dl.acm.org/doi/10.1145/contrib-99661719763
https://dl.acm.org/doi/10.1145/institution-60011520
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60011520
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3763132&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3763132&domain=pdf&date_stamp=2025-10-09

AccelerQ: Accelerating Quantum Eigensolvers with Machine
Learning on Quantum Simulators

AVNER BENSOUSSAN, King’s College London, United Kingdom
ELENA CHACHKAROVA, King’s College London, United Kingdom
KARINE EVEN-MENDQOZA, King’s College London, United Kingdom
SOPHIE FORTZ, King’s College London, United Kingdom

CONNOR LENIHAN, King’s College London, United Kingdom

We present AccelerQ, a framework for automatically tuning quantum eigensolver (QE) implementations—
these are quantum programs implementing a specific QE algorithm—-using machine learning and search-
based optimisation. Rather than redesigning quantum algorithms or manually tweaking the code of an
already existing implementation, AccelerQ treats QF implementations as black-box programs and learns to
optimise their hyperparameters to improve accuracy and efficiency by incorporating search-based techniques
and genetic algorithms (GA) alongside ML models to efficiently explore the hyperparameter space of QE
implementations and avoid local minima.

Our approach leverages two ideas: 1) train on data from smaller, classically simulable systems, and 2) use
program-specific ML models, exploiting the fact that local physical interactions in molecular systems persist
across scales, supporting generalisation to larger systems. We present an empirical evaluation of AccelerQ
on two fundamentally different QE implementations: ADAPT-QSCI and QCELS. For each, we trained a QE
predictor model, a lightweight XGBoost Python regressor, using data extracted classically from systems of
up to 16 qubits. We deployed the model to optimise hyperparameters for executions on larger systems of
20-, 24-, and 28-qubit Hamiltonians, where direct classical simulation becomes impractical. We observed a
reduction in error from 5.48% to 5.3% with only the ML model and further to 5.05% with GA for ADAPT-QSCI,
and from 7.5% to 6.5%, with no additional gain with GA for QCELS. Given inconclusive results for some 20-
and 24-qubit systems, we recommend further analysis of training data concerning Hamiltonian characteristics.
Nonetheless, our results highlight the potential of ML and optimisation techniques for quantum programs and
suggest promising directions for integrating software engineering methods into quantum software stacks.

CCS Concepts: « Software and its engineering — Application specific development environments; Search-based
software engineering.

Additional Key Words and Phrases: Quantum Computing, Quantum Program Analysis, Optimisation, Machine
Learning, Search-based Software Engineering, Genetic Algorithms

ACM Reference Format:

Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan. 2025.
AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators. Proc. ACM
Program. Lang. 9, OOPSLAZ2, Article 354 (October 2025), 31 pages. https://doi.org/10.1145/3763132

Authors’ Contact Information: Avner Bensoussan, King’s College London, London, United Kingdom, avner.bensoussan@
kcl.ac.uk; Elena Chachkarova, King’s College London, London, United Kingdom, elena.chachkarova@kcl.ac.uk; Karine
Even-Mendoza, King’s College London, London, United Kingdom, karine.even_mendoza@kcl.ac.uk; Sophie Fortz, King’s
College London, London, United Kingdom, sophie.fortz@kcl.ac.uk; Connor Lenihan, King’s College London, London, United
Kingdom, connor.1.lenihan@kcl.ac.uk.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART354

https://doi.org/10.1145/3763132

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

https://orcid.org/0009-0007-3285-9468
https://orcid.org/0000-0003-2857-5570
https://orcid.org/0000-0002-3099-1189
https://orcid.org/0000-0001-9687-8587
https://orcid.org/0000-0003-1885-2941
https://doi.org/10.1145/3763132
https://orcid.org/0009-0007-3285-9468
https://orcid.org/0000-0003-2857-5570
https://orcid.org/0000-0002-3099-1189
https://orcid.org/0000-0002-3099-1189
https://orcid.org/0000-0001-9687-8587
https://orcid.org/0000-0003-1885-2941
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763132
https://www.acm.org/publications/policies/artifact-review-and-badging-current

354:2 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

1 Introduction

Modern Noisy Intermediate-Scale Quantum (NISQ) devices represent the current state of Quantum
Computing (QC). They operate with a limited number of qubits that are prone to errors due to
decoherence and imperfect control, and they lack the ability to perform fault-tolerant computations
due to the inability to sustain deep circuits required to demonstrate quantum advantage [2, 12,
72]. Quantum simulators have become essential tools due to their accessibility, cost-efficiency,
deterministic behaviour, and seamless integration into classical workflows. These simulators enable
researchers to prototype, optimise, and validate quantum algorithms without immediate access to
quantum hardware, to prepare for the future deployment on more reliable quantum hardware.

One of the most promising applications of QC lies in simulating quantum systems for chemistry
and materials. In the 80s, Feynman originally envisioned QC as a means to simulate quantum matter
more efficiently [31], and breakthroughs could accelerate advances in chemical production, materials
design, drug discovery, and, more recently, Al, healthcare, and finance [1, 43, 44, 51, 54, 56, 70].
Classical computational methods, however, struggle with these problems because representing and
analysing quantum systems requires resources that grow exponentially with system size. QC offers
an avenue to accelerate the process of simulation by representing and manipulating a quantum
state using polynomial resources.

Achieving optimisation in quantum computing (QC), outperforming classical methods, remains
a challenge in the NISQ era. While optimisation is a core concern in both classical and quantum
systems, quantum programs are not just classical code with quantum platform libraries’ invocations:
they implement unitary, reversible dynamics with stochastic measurements and run on noisy, NISQ
devices. Consequently, optimisations can yield no benefit or degrade accuracy ([22, 38, 50] and as
discussed in §8). Algorithmic frameworks and compiler-level tools, such as transpilers and circuit
synthesis or reduction methods [38, 53, 59, 98, 99], support optimisation, but, in practice, achieving
effective and reliable optimisation is a challenge [85, 99]. Optimisation targets circuit width (number
of qubits), depth (gate layers or terms), specific gate parameters such as rotation angles or fidelity [59,
98, 99], further approaches utilise machine learning (ML) [53] or user annotations at the program
level [38]. Further, directly optimising quantum implementations (i.e. programs that implement
quantum methods and algorithms) is especially critical for near-term applications, where resource
constraints are tight and execution time on real hardware is both limited and costly. One essential
aspect of this optimisation is hyperparameter tuning, adjusting key algorithmic parameters such
as gate configurations, gradient estimation methods, stopping criteria, resource allocation, and
truncation thresholds in approximations. While the problem of hyperparameter optimisation has
been extensively studied for classical algorithms [42, 103], it has also gained interest in the context
of quantum algorithms, particularly in quantum ML [19, 42, 61].

This work aims to optimise constants in quantum algorithm implementations, formulating it as a
hyperparameter optimisation problem. We investigate a class of quantum implementations known
as Quantum Eigensolvers (QEs). A key problem in quantum chemistry and materials modelling is
finding a system’s lowest energy state (ground state), which determines properties such as reaction
rates, spin interactions, and material stability. This importance has driven the development of
various quantum algorithms for the task, including the Variational Quantum Eigensolver (VQE)
[71, 87], ADAPT-VQE [36], and Quantum Phase Estimation (QPE) [49, 66], with corresponding
libraries and interfaces already integrated into quantum platforms, as discussed in §3.1.

Our Contribution. We investigate the optimisation of quantum implementations of Quantum Eigen-
solvers (QE) designed to find the eigenvalues and eigenvectors of a given Hamiltonian system and,
in particular, to calculate its lowest eigenvalue. We explore two QE implementations: (1) the Adapt
Quantum-Selected Configuration Interaction (ADAPT-QSCI) [48, 77] and (2) the Quantum Complex

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators 354:3

Exponential Least Squares (QCELS) [18, 24] eigensolvers. Our approach integrates SE and ML to
enhance performance and accuracy under hardware-like constraints (e.g. limited memory, fixed
shot budgets) utilising quantum simulators, thereby mimicking quantum hardware’s limitations.

We combine these two strengths within a search-based software engineering (SBSE) optimisation
framework [40]. SE enables code-level validation of hyperparameter suggestions, ensuring they are
physically plausible and correctly integrated into QE implementations (e.g. propagating proposed
values through actual executions and inspecting correctness beyond the final output). ML brings the
ability to generalise from prior optimisation runs. Specifically, we utilise (i) Genetic Algorithm (GA)
to explore the hyperparameter space via mutation and crossover, and (ii) ML to predict promising
regions from training on small Hamiltonians (< 16 qubits). This strategy avoids local minima,
accelerates convergence, and, by incorporating Hamiltonian structure, provides a richer, physically
informed search space. It addresses a second challenge: solving systems above 16 qubits are often
prohibitively expensive or infeasible in the current NISQ era [62].

By training on small, classically simulable systems, ML models can capture correlations between
Hamiltonian properties and effective hyperparameters under a given QE implementation. It is
feasible because local physical interactions in molecular systems persist across scales (e.g. a small
hydrogen chain appears identically as a subsystem in a larger one), allowing the model to learn from
these recurring structural building blocks. Nonetheless, the framework is implementation-agnostic:
it operates on any Hamiltonian and takes the QE implementation Python and quantum libraries
code as input. The only implementation-specific components are a testing mechanism to detect
physically invalid hyperparameter values and the extraction of all tunable constants, which can
differ between implementations, even for the same quantum algorithm.

We developed AccelerQ to optimise QEs’ hyperparameters. An ML model, QE predictor,
trained on evaluations of small systems per QE implementation, was used to generalise to larger
systems. In our experimental evaluation, we trained AccelerQ on small systems: systems up to 16
qubits and predicted the hyperparameters for larger systems: 20-, 24-, and 28-qubit systems. All
20-28 qubit test systems were fully unseen during training. Optimisation was then performed per
QE implementation and target Hamiltonian, thus each larger system receives its own optimised
hyperparameters. We compared these against the default hyperparameters, which remain fixed
regardless of the QE’s input. Results show clear improvements for complex systems, particularly at
20 and 28 qubits, with minimal or no gain on simpler systems with fewer Hamiltonian terms.

Figure 1 illustrates the architecture of AccelerQ and highlights the interplay among its core
components, which directly align with the key contributions of this paper:

Large hamiltonians (> 16 qubits)

Small hamiltonians (< 16 qubits) .
inpu

pli
H amet
QBRI QE predictor training ypefparfime <
§3.1 Data Optimisation

‘ input ion|features/tabels Fitness XGBoost) | fitness proxy | ("Search-based —_—
Adapf’ QsCI Q(;IE'LS §4.3 function | €25 | regressor optimisation |%lidates| 542
§3.2 §3.3 £ §4.1 §4.4 §4.5 :
anpu.T

Hyperparameters’ generator

model files|

suggested hyperparameters
Evaluation /

§6

MPS simulator

Fig. 1. AccelerQ at a glance: inputs from the QE library feed data augmentation and training (QE predictor),
which serves as a fitness proxy for hyperparameter optimisation; suggestions are evaluated on a simulator.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

354:4 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

e Formulating the Optimisation Problem (§2): We describe the fitness function of our optimi-
sation problem as a hyperparameter optimisation problem of a given QE and a Hamiltonian.

¢ A General Framework for QE Optimisation (§4): We propose a search-based framework
combining ML and GA to optimise QE implementations’ hyperparameters at the level of QE
implementation and a problem Hamiltonian.

e Scalable Learning from Small Quantum Systems to Apply on Larger Systems (§4): We
introduce a methodology that learns patterns from small, classically simulable quantum systems
(< 16 qubits) and applies this knowledge to optimise simulations of larger systems (20-28 qubits).

o AccelerQImplementation (§5): We implemented our approach in a new tool, AccelerQ, which
treats the QE implementations as a black box, requiring no internal modification.

e Empirical Evaluation on Two QE Implementations (§6, §7): We evaluated AccelerQ on
two use cases (ADAPT-QSCI and QCELS) across 16 Hamiltonian systems.

e Manual Analysis and Validation (§8, §9): We further investigated the correctness of the
results manually, beyond comparing the reference result, ensuring reported results are sensible
and stem from a valid computation of the lowest eigenvalue and not by chance.

We empirically evaluated our contributions through five research questions (RQs).

RQ; How does AccelerQ affect hyperparameter values in QE implementations compared to their
default settings?

RQ, Can QE predictor models trained on smaller systems make useful predictions for optimal
hyperparameters generalise across system sizes?

RQs To what extent can AccelerQ’s optimisation of hyperparameters accelerate and improve the
efficiency and accuracy of QE implementations in terms of system size?

Via an ablation study, in RQ4, we compare the performance of AccelerQ against a weaker variant of
it, to assess whether the additional effort introduced by genetic algorithms and code-level validation
of hyperparameter suggestions, i.e. a set of tests, yields meaningful improvements.

RQ4 How scalable is each configuration, in terms of iterations and error rate, when applied to QE
implementations for Hamiltonian systems with increasing qubit number and complexity?

RQs To what extent does AccelerQ affect the variance of QE results (error, iterations, and final
energy) across Hamiltonians of the same size?

RQs goes beyond achieving the lowest scores: it examines the optimisation process’s stability,
reproducibility, and threats to validity. The RQs evaluate each contribution’s impact, first the QE
predictor model, then the genetic algorithm (GA) guided by a test set, on hyperparameter optimi-
sation. We assess AccelerQ by comparing it against the baseline (the QE’s default hyperparameters)
and two variants of AccelerQ: (1) only ML, and (2) combining ML with a GA guided by a test set.

2 Quantum Eigensolvers as Optimisable Software Components

Quantum eigensolvers (QEs) are quantum algorithms designed to approximate primarily the lowest
energy eigenvalue of a physical system and the corresponding eigenstate. A quantum system is
defined by a Hamiltonian, an operator that describes how the system evolves and encodes its total
energy.

Estimating energy levels of large quantum systems remains computationally demanding: current
NISQ hardware suffers from noise that scales exponentially with the size of the studied system.
Hence, the circuits we are investigating (> 20 qubits) would produce unusable outputs on quan-
tum hardware available today. Simulating such circuits classically eliminates noise, but requires
exponentially growing resources, making new quantum-based techniques and their optimisation
essential for estimating energy levels in larger systems.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators 354:5

Initial State ‘ Quantum Improved E_,
Hyperparameters 1 Eigensolver (QE) (Lower Error)
”””””” Problem Hamiltonian =M |mplementation §

Fig. 2. Overview of QE algorithms, with the grey-dashed area indicating where automated software engineer-
ing and machine learning can enhance outcomes. Initial State is the Ansatz or Reference State; Hyperparameters
are numerical/boolean data and differ between implementations of QE; Problem Hamiltonian is an operator
or function that represents the total energy of a system; and Improved E.; is the improved (low-error) lowest
eigenvalue approximation, possibly including also the lowest eigenstate.

QE implementations (§3.1) combine a series of operations, e.g. quantum gates, on the quantum
simulator or hardware and measurements of the state of the system to either prepare a representation
of the eigenstate of the Hamiltonian or directly evaluate its eigenvalue. QEs take as input a problem
Hamiltonian, an initial state!, and a set of hyperparameters as input (see Figure 2). They return an
estimate of the lowest eigenvalue with performance depending on the specific QE implementation,
the properties of the Hamiltonian, and the suitability of the chosen hyperparameters in the context
of the input Hamiltonian. This can be formulated as a minimisation optimisation problem:

fQE(e;I:I) = |Eest(9;1:1) - Etrue(ﬁ)‘ (1)

thus 1) H is the input Hamiltonian, 2) 0 denotes the QF hyperparameters, 3) Ecg(6; H) is the
estimated lowest eigenvalue from the QE implementation, and 4) Egye (H) is the true ground state
energy (computed classically or known analytically). This absolute error defines the fitness function
and is used to optimise hyperparameters for accuracy. When E,,. is unavailable, the error rate
percentage likely cannot be computed due to complexity of the Hamiltonian system; however,
for variational methods, a more accurate prediction corresponds to a lower (i.e. more negative)
estimated energy, assuming this property is correctly encoded in the QE implementation. If the
implementation is faulty, trivially, optimisations are not expected to yield correct results.

Research Problem. This work aims to improve the accuracy of quantum eigensolver (QE) imple-
mentations through automated optimisation. The areas shaded in grey in Figure 2 are those parts
we can control and optimise with automated software engineering methods. We operate under
the constraint that the QF implementation is treated as a black box?. Consequently, we focus on
identifying hyperparameter configurations that improve estimation accuracy for a given input
Hamiltonian, and defer the optimisation of initial state preparation to future work.

AccelerQ takes as input the source code of a QF implementation (in our case, written in Python),
along with manually identified terms and their associated data types that are expected to influ-
ence performance (currently through manual inspection, with plans for automation). Based on
these parameters, AccelerQ samples the QE’s behaviour in a black-box manner using small input
Hamiltonians to train a QE predictor model. This model is then used to automatically adjust the
relevant constants to optimise performance for larger input systems as a preprocessing step before
execution. Incorporating the Hamiltonian into the workflow or modelling of quantum programs,
although less conventional than the circuit model, opens up further opportunities for program
analysis, particularly in simulation-driven domains like quantum chemistry.

Typically the Hartree-Fock state in chemistry applications [84].

This is partly because we aim to present a general solution that takes a QF implementation as input, rather than re-writing
its internal code manually, and partly because constructing or improving a QE implementation remains a significant
challenge in its own right [76, 77], arguably falling within the domain of quantum physics research.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

354:6 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

3 Background

Our approach combines quantum computing (§3.1), exemplified on two QE used in our evaluation
(§3.2 and §3.3), with machine learning techniques applied to software engineering (§3.4).

3.1 Quantum Implementations and Quantum Eigensolver

We refer the reader to [66] for background on quantum gates, circuits and Hamiltonians. We focus
here on quantum computational models and QE implementations. Quantum implementations
are programs written in languages such as Python, Java, or C/C++, using dedicated libraries
provided by quantum computing platforms. Many quantum platforms provide ready libraries,
interfaces or templates for QF implementations, such as the standard quantum chemistry libraries
in Qiskit [73] and PennyLane [96], whilst others have external packages like Cirq [74] and Braket
[4]. Specifically, a VQE implementation is included in the Qiskit Algorithms library. Qiskit also
defines general-purpose eigensolver interfaces (not limited to VQE-style algorithms), such as
Eigensolver and MinimumEigensolver. Nonetheless, quantum platforms can support QE execution
via plugins or external libraries, even if QE functionality is not included natively, for example, with
OpenFermion-Cirg, pennylane-braket, and pennylane_qiskit, e.g. [17] (subsection 7.4.3).

Quantum eigensolver implementations can be broadly categorised by how they interact with the
input Hamiltonian. Most commonly, the Hamiltonian is translated into a parametrised quantum
circuit, as in variational and phase estimation algorithms under the quantum circuit model [66, 71].
Alternatively, purely classical eigensolvers may operate directly on the Hamiltonian through exact
diagonalisation, but are limited by unfavourable scalability [20]. A third category includes quantum
computational models that act directly on the Hamiltonian without circuit translation, such as
QCELS, adiabatic quantum computation, and quantum annealing, which represent different but less
common non-circuit-based approaches to quantum computing [29, 46]. In general, these methods
are less suited to NISQ devices as they rely on continuous-time evolution or hardware-specific
requirements that are difficult to implement on noisy gate-based hardware.

In §6, we consider two representative examples: one translates the Hamiltonian into a quantum
circuit (§3.2), and another operates directly on the Hamiltonian without circuit decomposition
(§3.3). In this paper, we treat each QE as a black box, with its internal lowest-energy minimisation
objectives defined in [18, 63]. Our optimisation instead targets the prediction error defined in
Equation 1. Consequently, we provide a high-level description of each QE (in §3.2 and §3.3) and
refer the reader to the original publications for full mathematical details.

3.2 ADAPT-QSCI Algorithm

The Quantum-selected configuration interaction (QSCI) method is a quantum chemistry algorithm
that calculates molecular electronic structures in an intelligently chosen subspace, enabling larger
systems to be studied on modern NISQ devices [48]. An exact calculation in the full Hilbert space,
even when constrained by symmetries, requires a high computational cost and memory usage
infeasible for large Hamiltonians. QSCI reduces the computational space by selecting the subspace
consisting of only the computational basis states (aka configurations in quantum chemistry) with
the highest weight in some pre-chosen input state prepared on a quantum computer. Hamiltonian
diagonalization is in the selected Ry dimensional subspace Sy = span{lrl(k)) yeens |r1(£))} [48]. QSCI
uses a quantum computer only to generate the subspace via sampling. The subsequent calculation
to output the ground-state energy is executed on classical computers. This is feasible on classical
machines because QSCI reduces the subspace dimensionality.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

https://quantum.cloud.ibm.com/docs/en/guides/qunova-chemistry
https://github.com/PennyLaneAI/pennylane/blob/master/doc/introduction/chemistry.rst
https://qiskit-community.github.io/qiskit-algorithms/stubs/qiskit_algorithms.VQE.html
https://qiskit-community.github.io/qiskit-algorithms/stubs/qiskit_algorithms.Eigensolver.html
https://qiskit-community.github.io/qiskit-algorithms/stubs/qiskit_algorithms.MinimumEigensolver.html
https://quantumai.google/cirq/experiments/hfvqe/molecular_data
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/pennylane/3_Hydrogen_Molecule_geometry_with_VQE/3_Hydrogen_Molecule_geometry_with_VQE.ipynb

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators 354:7

0)
[¥o)

Fig. 3. QCELS circuit [24]. W gate represents an optional ST gate to calculate the imaginary part of the result,
and if removed, the real part is calculated.

The Adaptive Construction of Input State for Quantum-Selected Configuration Interaction
(ADAPT-QSCI) algorithm [63] iteratively uses QSCI to construct the input state for the next QSCI
iteration. At each step, a subspace is selected by measuring the quantum state from the previous
step. ADAPT-QSCI chooses the next quantum gate to add to the input state from a predefined set
of multi-qubit Pauli operators IP = {P;, ..., Pr} by calculating the gradients, h; = (cx|i[H, P;]|ck)’,
in the subspace Sg. The Pauli operators are generators of rotation gates. The optimal rotation angle
of the gate (the angle which lowers the energy of the state the most) is also found classically in
the selected subspace Sg. The algorithm is similar to ADAPT-VQE [36], but differs in how the
next gate and rotation angle are chosen. Whereas ADAPT-VQE selects them directly through
quantum measurements, ADAPT-QSCI computes them classically within a subspace informed
by measurements of the previous quantum state while utilising quantum computing in the state
preparation and measurement steps.

3.3 QCELS Algorithm

We utilise the Quantum Complex Exponential Least Squares algorithm (QCELS) [24]. NISQ al-
gorithms typically prepare an ansatz state and measure it in a Pauli basis [66], whereas QCELS
uses a controlled time-evolution unitary. It avoids the optimisation issues that hinder large-scale
variational NISQ algorithms [15, 57] and has a low enough circuit depth to be likely suitable for
early error-corrected quantum computers, making it well-suited for problems with more qubits
than NISQ algorithms can handle.

QCELS takes a reference state |1;) and evolves it by the time evolution operator U(t) = e~ H¢,
where H is the Hamiltonian system. The time evolution operator is enclosed within a Hadamard
test (as depicted by Figure 3), see [66] for an introduction to quantum circuits. This circuit measures
the overlap between the time-evolved state U(t) |p) and the initial reference state |1)y). If the
reference state is not exactly the ground state, the resulting expectation value as a function of
nis Z, =~ (Yo|lU(t,) o) = Zipie Filn where p; = | (¢;|o) |? is the probability of measuring the
eigenstate |¢;) of the Hamiltonian. Thus, if a reference state with good overlap with the true ground
state is known, we can apply the time evolution operator within a Hadamard test N times and fit to
the resulting complex exponential. We implemented the time-evolution operator using a first-order
Trotter—Suzuki expansion, truncating the Hamiltonian to the terms with the largest coefficients to
reduce gate count. We fit the resulting data with a function composed of a sum of three complex
exponentials (Equation 2), to partially account for the inexactness of the reference state.

(3) —i0yt
fit

=re 0ty reT 0t L (1 — = y)e 05 @)

In Figure 4, we present results for test data collected from an orbital rotated Hubbard Hamiltonian
on a 28-qubit example (in blue dashed line), with a sequential improvement towards the correct
answer as we increase the number of frequencies in the fit: first fitting in red, second fitting in

3|ck) is a state corresponding to classical vector cx = Zf:kl (cr)1 |rl(k)), and i[H, P;] is calculated through projecting onto
the subspace Sk and evaluating the expectation classically using the classical vector ck.[63].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

354:8 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

Re((U(t)
Re((U(t)
Re((U(t)

000 005 0l 0l 020 025 030 000 005 010 015 02 025 030 000 005 010 015 02 025 030
t

(@ £ () £ © £

Fig. 4. QCELS results from orbital rotated Hubbard Hamiltonian, 28-qubit sample data, various parameters.

green and third fitting in black, showing an improvement throughout the process of a minimisation
problem.

3.4 Software Engineering Optimisation Methods

Search-based software engineering (SBSE) techniques and genetic algorithms (GA) have been
widely applied to diverse SE problems such as code and requirements optimisation [34, 40, 41, 55].
GA aims to find the near-optimal solution iteratively, ending when a stopping condition is met,
e.g. reaching the maximum iterations. Commonly, such approaches start with a set of candidate
solutions, each evaluated using a fitness function. At each iteration, the best solutions are selected
based on fitness, and variation is introduced through mutation (e.g. bit flips) and crossover to
explore the search space and produce potentially better offspring. To avoid premature convergence
to local optima, diversity can be maintained by adding noise or removing a portion of the candidates.
When direct evaluation of the fitness function is computationally expensive or infeasible, the fitness
function can be approximated for large Hamiltonians with machine learning (§4).

The Gradient Boosting technique [32] is a supervised learning method suitable for regression
and classification. It efficiently handles large amounts of data, real numbers and datasets with
many features. In this work, we use it to train QE predictor in §4. The resulting QE predictor
model enables high-precision predictions on large datasets, effectively avoiding flat predictions
from scaling issues or oversimplified outcomes caused by insufficient data relative to the number
of features.

4 AccelerQ

This section details the methodology of AccelerQ: data augmentation, predictor training, and
search-based optimisation. These are not contributions in isolation but, together, instantiate our
core contribution: embedding SE and ML into the optimisation loop of QE implementations to
reduce error under hardware-like constraints (§6). In our evaluation, we applied this process to
two QF implementations (§3.2, §3.3) and summarised the findings in §7.

More concretely, AccelerQ aims to enhance quantum implementation performance through
hyperparameter optimisation. We manually examine the QE implementation to extract a hyper-
parameter set! and formulate a hyperparameter optimisation problem. AccelerqQ utilises SSBS
and ML methods to optimise a QE implementation via tuning of the hyperparameter vector 0, for

4i.e. some expressions are extracted from the inner code, like the terms governing the Hamiltonian representation, while

others are already part of the parameters of the original problem, such as the number of shots.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators 354:9

Add commonly used Create Data Array
molecular (Hamiltonian,
Hamiltonians for Hyperparameters,

Solve with classical Train QE Predictor Predict Best Run Wrapper with
sampling Model with Data Hyperparameters Optimised
to fill Scores Array with QE Predictor Hyperparameters

small systems Score)

Fig. 5. AccelerQ process: Classical pre-processing, QE predictor model training on smaller systems and
generalisation on bigger systems

which an exhaustive evaluation is computationally infeasible, particularly for large Hamiltonians.
Selecting optimal parameters can reduce the number of shots (measurements) and improve the
accuracy of ground-state energy predictions.

Figure 5 illustrates our hyperparameter optimisation algorithm for quantum problems, which
follows the phases below.

Prepare the QF implementation for tuning. Given an implementation: a QE implementation
to optimise, we identify tunable constants in the QF implementation (some already exposed as
parameters, others moved out of the code) and write tests to validate hyperparameter values. Given
0 and a QFE’s test set, we can now define the Hyperparameters Generator: generator, a function to
generate valid hyperparameters for a given QF implementation. Each implementation requires its
own generator.

This phase defines generator, 0 (§4.1) and a QE’s test set (§4.2).

Data extraction & augmentation. ((A), (8), (C) Figure 5) Given an implementation and a
generator we sample solutions from few-qubit systems: a collection of small-Hamiltonian system
problems (16 qubits or fewer) from open-source/benchmark datasets. We run the QE implementa-
tion in classical simulation mode: a statevector simulator®, to generate training data for the input
implementation, where Eeg classical 1S the estimation of a QE’s lowest eigenvalue computations in
classical simulation mode. Thus can compute, y = Eest classical (X), Where:

e Inputs (X): the tuple x = (6; H), which is the compressed/flattened Hamiltonians and the
hyperparameter vectors.
o Outputs (Y): exact energy values, y, (computed classically).

Note that, AccelerQ uses the four input sets (implementation, Hamiltonian systems, statevector
and generator detailed above) to extract data arrays classically, based on the hyperparameter format
(0) and the specific hyperparameter ranges of that implementation (i.e. the QE’s test set, which
can include tests as the maximum number of iterations is an integer, whereas the Hamiltonian
coeflicient cut-off is a float), which are encoded into the hyperparameters generator.

This phase defines the training dataset saved as feature—label pairs (X,Y) (§4.3).

Train QE predictor. (@, Figure 5) Using the feature—label pairs (X, Y) dataset from the data
extraction & augmentation phase, AccelerQ trains an XGBoost model on the dataset to predict
ground-state energy (Ys) from {hyperparameters, Hamiltonian} pair (Xs). We save it as the QE
predictor model for the input QF implementation to optimise.

Se.g. see https://www.epcc.ed.ac.uk/whats-happening/articles/energy-efficient- quantum-computing-simulations.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

https://www.epcc.ed.ac.uk/whats-happening/articles/energy-efficient-quantum-computing-simulations

354:10 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

This phase defines QE predictor for the input implementation (§4.4).

Deploy QE predictor for optimisation. ((E), Figure 5) Given an implementation, its QE predictor
and generator, and a large system (Hamiltonian of more than 16 qubits), AccelerQ generates a
prediction of optimal hyperparameters, using QE predictor as our fitness function (i.e. fog(6; H),
Equation 1), generator with mutation and crossover operators and a GA feedback loop to refine
the initial suggestions. AccelerQ iteratively proposes candidate hyperparameters, QE predictor
predicts their performance, and the best candidates are propagated for further mutations.

This phase defines the optimised hyperparameters for an implementation and a Hamiltonian (§4.5).

AccelerQ provides tailored hyperparameter recommendations for executing an input QF im-
plementation, customised for each specific Hamiltonian and QE implementation ((F), Figure 5).
We compare each QF implementation’s default hyperparameters against those optimised by our
framework with an MPS simulator to assess the quality of the prediction in the evaluation §6.

Fustification: Direct evaluation of the lowest eigenvalue given a Hamiltonian system is (1) costly to
compute on quantum hardware and (2) computationally difficult to compute accurately on classical
computers due to its complexity. Since exhaustive search or direct evaluation of 6 is infeasible
for large systems, we train QE predictor, a regressor, on small, classically simulable systems to
estimate energy as the GA’s fitness function. Consequently, the model approximates the ground
state energy, aiming to minimise prediction error trends rather than exact values (see Equation 1).
GA was chosen for its ability to handle mixed-type inputs, explore large search spaces, and, in
this work, integrate code-level feasibility tests for hyperparameter assignments directly into the
evaluation loop (i.e. the QF’s test set). XGBoost was selected for its robustness on sparse, nonlinear,
and floating-point data. XGBoost alone is insufficient, as it struggles on mixed-type inputs and could
naively increase parameters such as sampling_shots or iteration_max to improve predicted
performance without considering resource constraints. Importantly, our optimisation targets the
QE implementation’s hyperparameters, not the ML model’s, distinguishing our work from typical
ML hyperparameter tuning. Exploration of alternative regressors, ML hyperparameter tuning, or
other modelling setups for QE predictor is left for future work.

4.1 Fitness Function

AccelerQ employs a fitness function, for(6; H), defined in Equation 1 to iteratively optimise the
hyperparameters of a given QE implementation, minimising error in the predicted ground-state
energy of a given Hamiltonian H. The QE hyperparameters, 6, is an ordered tuple represented as a
vector of mixed types (float, boolean, integers). In the preparation stage, we define 8’s structure per
QE. ADAPT-QSCI and QCELS’s are listed in §6. Example 1 shows possible differences between the
default hyperparameters, @ pgpp, which were in the original QE implementation, the two variants of
AccelerQ, one using only ML Oppr, and one combining ML with a GA guided by a test set O7gs7.

Compressed Flattened Hamiltonian: In our setting, H is the problem Hamiltonian, encoding the
total energy of the quantum system. It is represented in code as a FermionOperator object (from
OpenFermion), which stores a set of term-coefficient pairs. Terms are floats, and coefficients are
complex numbers. H is converted into a fixed-length numeric feature vector via the following steps:

(1) Term extraction: Retrieve all operator—coefficient pairs from the FermionOperator.

(2) Flattening: Recursively unpack any nested list or tuple structure into a one-dimensional list
of floating-point numbers, discarding any imaginary component.

(3) Filtering: Remove small-magnitude values below a given threshold (e.g. |x| < 0.2).

(4) Sorting: Sort coefficients by absolute value to prioritise larger contributions.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators 354:11

Effect of Hyperparameter Optimisation for ADAPT-QSCI

ExampLE 1. For ADAPT-QSCI, the default hyperparameters (Opgr) are:

‘ 100, 0.001, 0, 100, 100000, 1.00E-06, 5, 128, 0,<Compressed Flattened Hamiltonian> ‘

Using these, the predicted lowest eigenvalue for a 20-qubit system is —21.102120951, compared to the true value of
—22.046059902. AccelerQ optimises the hyperparameters and may yield the assignment (Oopr):

‘ 985, 7.64647e—-03, 0, 344658, 49458, 5.67168e-05, 3, 77, 1,<Compressed Flattened Hamiltonian> ‘

This results in a prediction of —21.513448108, cutting the error by half. Using the hyperparameter validation set (OTgsT),
AccelerQ selects more reasonable values—for example, reducing the algorithm’s maximum iterations from 344,658 to a

much lower limit. The values in this example follow the order and format of the hyperparameters listed in Table 1.

This produces a compact representation of H that captures both the structure of the interactions and
their relative strengths, enabling regression models to correlate Hamiltonian characteristics with
effective hyperparameter settings. The compressed, flattened Hamiltonian remains fixed during
optimisation and is not mutated.

4.2 Hyperparameter Validation Test Set

Hyperparameter optimisation is inherently greedy: selecting the set with the minimum predicted
value often yields configurations with a combination of a high number of shots and many iterations.
While this may improve accuracy, it also leads to execution times spanning days or weeks. In
simulations, running such setups locally may be inconvenient but manageable. However, the com-
putational cost can become extremely expensive when deployed on quantum hardware. Moreover,
many platforms cap the number of shots per execution or over time, further limiting the feasibility
of high-resource configurations.

A QE’s Test Set: We implement static and semi-dynamic validation tests to ensure sensible hyper-
parameter combinations. Static tests check constraints without execution of the QE implementation
code, while semi-dynamic tests run selected functions without executing the full ADAPT-QSCI
or QCELS pipeline. The tests aim to enforce some constraints roughly to avoid disrupting the
overall optimisation process (e.g. limiting max iterations to 1000 when typically only 100 fit in
ADAPT-QSCI). These tests are encoded into the generator with static tests running first, followed
by more complex ones. Each QE implementation has its own test set, with some overlap. We list
the test set for each QF implementation in §6.

4.3 Data Augmentation

ML algorithms operate in two primary phases: training and prediction. In a supervised learning
context, the training phase requires a sufficiently large and representative dataset consisting of
input instances and corresponding ground truth outputs. When this dataset is diverse and of high
quality, the trained QE predictor model can generalise and make reliable predictions on unseen
data. Therefore, the effectiveness of our approach strongly depends on the quality and size of
the training dataset. However, obtaining a large and robust dataset for quantum simulations is
challenging, primarily due to the high computational cost of accurately computing energy levels
for large Hamiltonians on quantum hardware®.

To address this challenge, we employ a domain-specific form of data augmentation (@ ®), @
Figure 5). We generate multiple variants of input Hamiltonians by modifying their parameters

®For example, IBM’s quantum computing is priced at $48 per minute https://www.ibm.com/quantum/pricing

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

https://www.ibm.com/quantum/pricing

354:12 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

or structures in physically meaningful ways that preserve essential characteristics. This includes
truncating Hamiltonian terms below a meaningful threshold or adjusting coefficient cutoffs. These
variations simulate plausible alternative quantum systems, effectively enriching the training set
while preserving the statistical properties needed for generalisation. Since these transformations
are applied to Hamiltonians with up to 16 qubits, we can compute accurate energy levels using
classical state vector simulators, avoiding the need for costly quantum hardware. Moreover, because
our systems are relatively small, the data augmentation process can be executed efficiently on
standard classical hardware (e.g. x86 CPUs), without requiring GPUs or specialised accelerators.

Each training instance is (x;,y;), with x; = (9i;Hi) and y; = fQE(Oi;I:I,-), where H;, is the
compressed Hamiltonian (preserving essential physical properties while saving memory and
avoiding over-fitting), fo, is the exact energy level (computed classically), and 6, the associated
hyperparameters. To generate many X;, we augment by drawing H from open-source/academic
benchmarks, and 6 is sampled at random within predefined type/range constraints.

We perform augmentation separately for each QF implementation because (1) hyperparameters
differ across implementations, and (2) each implementation exhibits different behaviour, even when
using a classical state vector simulator. We use the resulting dataset, (X, Y), to train a QE predictor
model to predict suitable hyperparameters for unseen Hamiltonians with up to 28 qubits.

4.4 The QE Predictor Training

While computing the fitness function (or lowest eigenvalues) for QF with 20-30 qubits is feasible,
doing so directly is computationally extremely expensive. Instead, we use a QE predictor model
to approximate the relationship between hyperparameter choices. We collect data arrays from
Hamiltonian systems with < 16 qubits, of hundreds of computationally inexpensive samples (§4.3).
These smaller systems typically have higher minimum energy levels. Nonetheless, the aim is not
to compute the exact minimum eigenvalue but to identify hyperparameters likely to yield lower
values. This reduces computational cost while guiding optimisation effectively, enabling evaluation
of many assignments of € in §4.5 to make informed predictions for larger, more computationally
demanding systems.

AccelerQ trains a QE predictor model in two phases (@, Figure 5).

In the data preparation phase, we construct the feature array using data collected via data
augmentation (§4.3), creating an (X, Y) augmented dataset; Y’s values represent the true values
obtained during the data preparation phase. AccelerQ pads all x; € X to a fixed-size feature array
of a predefined maximal size of the Hamiltonian systems. We include the compressed, flattened
Hamiltonian (§4.1) in the feature array to establish a connection between the hyperparameter
values and the specific characteristics of a Hamiltonian. These include e.g. dominant terms. The
dataset is stored in a persistent storage for the training phase. In the training phase, AccelerQ trains
a Regularising Gradient Boosting Regression (XGBoost regressor) using (X, Y) padded augmented
dataset, for a given QE’s hyperparameter vector and compressed Hamiltonians. The above can be
summarised in the following steps:

Inputs: (X, Y), H.

(1) Pads all vectors x; in X to a fixed size: |0;|+max{|H]|, max, _ g..f,)ex |F;]}
(2) Splits into training set and test set.

(3) Trains XGBoost regressor with training set.

(4) Evaluates on the test set.

(5) Saves the trained model for use in §4.5.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators 354:13

Output: model_fileQE_IMpL_NAME.

The QE predictor is generic, but training data depend on the QE implementation, solver, and
hyperparameter generator. Trained models are saved as model_fileor rmpr_namE-

4.5 Optimisation

Once trained, QE predictor predicts optimal hyperparameters for larger-qubit Hamiltonians ((E),
Figure 5). We use a QE predictor to evaluate the fitness function, for (Equation 1) for the search-
based optimisation process and apply mutations that adhere to the format of its hyperparameters.

In the hyperparameter optimisation phase, given a QE implementation (with its generator and
QE predictor) and an input Hamiltonian H with more than 16 qubits—preprocessed (compressed
and flattened) as in training—, AccelerqQ initialises a population of candidate vectors {(6;; H)},
where each seed i is a hyperparameter assignment sampled by the generator. The fitness function,
fok, evaluates each candidate by approximating the lowest eigenvalue for (8;; H) configuration,
utilising the QE predictor to compute an approximation of for(6;; H), and then selects the the best-
performing candidates (those with the lowest predicted scores) for mutation in the next generation
to create new seeds. A crossover operator then combines pairs of these vectors to generate new
hyperparameter candidates, using methods such as averaging, selecting extreme values, and random
values (see in [10]). AccelerQ occasionally introduces noise to diversify solutions and avoid local
minima. The process continues until a stopping condition is met, such as reaching a maximal
number of iterations. The vector 6 with the lowest error (or just the lowest predicted eigenvalue
if the true value is unknown) is then returned as the optimal hyperparameter set. The procedure
steps are as follows:

A

Inputs: model_file, regressor, generator, test_static, test_semi_dynamic, H, C = 0.
(1) Load QE predictor: for < load_model(model_file, regressor).
(2) Seed Initial population: Repeat i = 1..500:

2.a. Sample 0; «—generator(i,opt_n_qubit)
2.b. if fails test_static || test_semi_dynamic: discard 6; else: C < C U {(0;, for(0;; H))}

(3) Iterative improvement:

3.a. Selection: keep best ~10%, lowest scores in C.

3.b. Mutation: repeatedly combine two, 8y and 0, thus (0}, score;), (O, scorex) € C using one
of the crossover operators, resulting in a new mutant 6;.

3.c. if fails test_static || test_semi_dynamic: discard 6; else: C < C U {(Oi,fQE(()i;ﬁ))}

3.d. Periodic pruning & noise: every 5 rounds, prune the population (keep top ~50%) and inject
new random seeds via generator (filtered by tests) to maintain diversity.

Output: Return best 6* that is the x of (x,y) € C such that y is the smallest in C.

The model_file is unique per QF implementation (i.e. model_filegr rmpr_name) and regressor
is XGBoost (§4.4). test_static and test_semi_dynamic are the QE’s test set (§4.2), require access
to the QF implementation’s code, and are applied in order of cost, with static tests run first. The set
C, the seed set, contains pairs of hyperparameters and their corresponding fitness function scores.
In our experiments, Step (3) ran for 50 iterations. We execute the QF implementation with 6* ((F),
Figure 5). We repeat the optimisation for each Hamiltonian system and for both ADAPT-QSCI and
QCELS implementations in §7.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

354:14 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

5 Implementation Details

We implemented AccelerQ (all stages in §4) in Python 3.10.12, using a GPU for training and
keeping QE predictor models small for CPU deployment. We employ the open-source Python
XGBoost library (eXtreme Gradient Boosting) [97]. We used the Python library QURI Parts’ for
the simulations while applying some resource consumption constraints [77]: a practical time limit
of 6 x 10° seconds and a shot limit of 107 to mirror the limitation of the high cost of quantum
computer execution. We used ADAPT-QSCI from [63] and QCELS from [18].

Each QE can run in a classical mode (an exact classical simulator) or an evaluation mode (an
approximate quantum simulator). We restricted classical mode runs to a maximum of 16 qubits due to
high computational complexity. Evaluation mode uses matrix product states (MPS) [6, 67, 105, 106]
to store the system state more efficiently, enabling time- and memory-efficient simulation of larger
systems, but at the cost of some approximation error.

A QF takes number_qubits, the flag is_classical (set to True during data collection and True
or False otherwise), and 0 as defined in §2. It outputs the system’s lowest energy prediction as a
Python float (17-digit precision). Each QE uses fixed default hyperparameters (6 vector), which
differ between implementations and include the compressed, flattened Hamiltonian. 8 vectors must
have a consistent length for the Python XGBoost library. Before training, vectors are padded to
a predefined maximum length, split into training and testing sets, and then trained, tested, and
evaluated. AccelerQ takes a QF implementation with its required inputs.

AccelerQ leverages Python’s ability to pass functions as arguments, allowing it to accept QE
implementations and their hyperparameter generators as inputs. The data augmentation, model
training, and optimisation steps are implemented in Python and can work with any such QE
implementation, although a wrapper and manual definition of constants as a hyperparameter
problem are currently required. This modularity enables straightforward extension to other QEs,
including those with hardware backends or simulator interfaces in C/Java, which we identify as
promising future work.

6 Evaluation

We evaluated AccelerQ’s ability to further optimise ADAPT-QSCI and QCELS implementations,
given a QE implementation and a system-specific Hamiltonian as input.

6.1 Methodology

Configurations. We consider three configurations in our evaluation of AccelerQ:

(1) Baseline. Executes QE implementations with fixed default hyperparameters.
(2) ML-Only. AccelerQ operates only with the QE predictor, excluding §4.2 and §4.5.
(3) Full AccelerQ. The complete approach as described in §4.

DEFAULT (Configuration 1) executes the QE implementations with their default hyperparameters,
which are fixed across all systems and are as in [18, 63]. OPT-ML-Only (Configuration 2) excludes
the use of genetic algorithms and hyperparameter tests and serves as a weaker variant of AccelerQ:
technically, we generated random seeds for the same number of iterations and selected the one
with the minimum score, no tests and no mutations.

"https://pypi.org/project/quri-parts/

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

https://pypi.org/project/quri-parts/

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators 354:15

Table 1. Parametrisation of ADAPT-QSCI and QCELS hyperparameters. # is the number of items.

Parameter Type Range Default Description

ADAPT-QSCI Hyperparameters

num_pickup int [50, 10%] 100 Controls #terms retained in the compressed Hamiltonian.

coeff_cutoff float [le-8,1e-2] 0.001 Complimenting num_pickup: Hamiltonian terms with co-
efficients below it are excluded.

self_selection bool True, False False If True, forces working in subspace.

iter_max int [10, 105] 100 Maximum iterations for the algorithm.

sampling_shots int [10, 10°] 10° #sampling shots for measurements per iteration.

atol float [le-8,1e-4] 1e-6 Absolute tolerance for convergence criteria.

final_sampling_shots_coeff int [1,9] 5 How many more shots to use in the calculation if the same
operator appears twice or operator parameter is close to 0.

num_precise_gradient int [35,300] 128 #operators from pool to calculate gradient more precisely.

reset_ignored_inx_mode int [0, 100] (1] #iterations to pass before reusing an operator in ansatz.

QCELS Specific Hyperparameters

ham_terms int [50, 103] 200 #terms retained in the Hamiltonian after truncation.
ham_cutoff float [le-8,1e-3] 1e-9 Same as coeff_cutoff in ADAPT-QSCL

delta_t float [le-3,0.3] 0.03 Time step for the simulation or evolution of the system.
n_Z7Z int [5,25] 25 #points used in fitting the time evolution.

alpha float [0.5,1] 0.8 Scalar to control parameters’ weight in Equation 2.

Experimental Procedure. We trained two QE predictor models—one per QE implementation—on
data from classically simulable systems up to 16 qubits. These models were then deployed to
optimise 16 larger Hamiltonians of 20, 24, and 28 qubits with known lowest eigenvalues, using the
ADAPT-QSCI and QCELS implementations (§3). The process used a QE implementation, its trained
model, and a system (Hamiltonian) and returned optimal hyperparameters. We then assessed the
performance with Configurations 1-3 and addressed RQs 1-4 stated in the Introduction (§1).

6.2 Experimental Setup

We describe below the experimental setup for the preparation of QE implementations and @ ®),
@ and @ in Figure 5 in §4.

Source of Hamiltonians. We use two sources of Hamiltonians: (1) QunaSys’s datasets® [75, 77],
and (2) commonly used open-source molecular Hamiltonians, including H20, LiH, BeH2,
Hemocyanin [3], and Hydrogen chain. Evaluation was performed on 20-, 24-, and 28-qubit Hamil-
tonians using predictions trained on smaller systems. Due to the high cost of quantum hardware
and the long runtime of QEs on 20+ qubits in the NISQ QC, all testing was done in simulation.
Data Augmentation. We extracted 66 files in a classical mode. ADAPT-QSCI produced 4,760 records
(757 MB), while QCELS, being more efficient on smaller systems, yielded 14,510 records (4868 MB),
including 400 and 5,550 records respectively from source (1) Hamiltonians and the rest from source
(2). For 4- 6-, 7-, 8-, 10-, 12-, 14- and 16-qubit systems, we utilised 60, 750, 500, 500, 1500, 450, 800
and 200 records for ADAPT-QSCI hyperparameters, and 60, 750, 500, 500, 1000, 6600, 2100 and 3000
for QCELS hyperparameters, respectively.

Parameterisation. The ADAPT-QSCI and QCELS implementations [18, 63] include default hy-
perparameters controlling their operation, used as a baseline for comparison in our evaluation
(i.e. DEFAULT). We summarised these in Table 1. All parameters of both implementations follow a
uniform distribution, except iter_max and sampling_shots, which follow a custom multi-tiered

8 QunaSys’s Hamiltonians: 4 and 12 qubits for seeds __00 to __04, and of 20 and 28 qubits for seeds __00 to __04.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

354:16 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

Table 2. Hyperparams. Tests of ADAPT-QSCI & QCELS Impl.; S: Static tests; SD: Semi-dynamic tests.

#Test Impl. Type Relevant Hyperparameters Description of the Test
ADAPT-QSCI S iter_max, sampling_shot No overshooting or using >1000 iterations.
2 Both SD num_pickup, coeff_cutoff, or Compressed Hamiltonian size is reduced meaning-
ham_terms, ham_cutoff fully.
3 Both SD same as #2 Checks if cut-off value is effective in reducing terms:

this is similar to #2, but set ham_terms to be the max-
imal (i.e. #terms in the original system).
Both SD num_pickup or ham_terms num_pickup is reasonable based on Hamiltonian size.
5 QCELS S n_z n_z is in [5,30].
6 ADAPT-QSCI S self_selection, system type Checks self_selection is sensibly set based on
Fermionic and particle-conserving properties.

7 ADAPT-QSCI S self_selection, iter_max, re- If self-selection is enabled, max iterations exceed reset
set_ignored_inx_mode iterations.

8 QCELS S delta_t delta_t is within a reasonable range.

9 QCELS S alpha alpha is in [0.5,0.9] for stability.

distribution that uniformly at random picks 10, and then uniformly samples an Integer in [10’,
107*1]. We set the hyperparameter ranges to fit the physical problem context. For QE predictor, we
defined x € X vector as the compressed Hamiltonian (by removing terms with absolute coefficients
below 0.05) and its hyperparameters, normalised to the size of 28-qubit systems. The y € Y vector
is the predicted lowest eigenvalue, yet the ys values are relative approximations (i.e. the ys values
are approximations that capture relative relationships rather than absolute meaningful values).

Default Values. Default values (Table 1, Default column, DEFAULT Configuration) were overridden
when using AccelerQ suggestions tailored per Hamiltonian system using values drawn from the
range (Range column, Configurations OPT-ML-Only and FULL-AccelerQ).

Tests. We wrote a set of tests for ADAPT-QSCI and QCELS summarised in Table 2, including the im-
plementation and the hyperparameters the test is relevant to (Impl. and Relevant Hyperparameters
columns), the type of the tests (static or semi-dynamic test; Type column), and the test description
(Description of the Test column).

Model Extraction. QE predictor models’ sizes were 1.1 MB for ADAPT-QSCI and 2.86 MB for
QCELS, trained with data extracted on an exact classical simulator from up to 16-qubit systems.

Machine Setup. Models were trained using XGBoost (XGBRegressor, v2.1.1) on a single GPU core,
NVIDIA 12GB PCI P100 GPU, 12 GB VRAM, running Ubuntu 22.04.4 LTS [26]. Simulations and
model deployment ran on a virtual machine with Ubuntu 20.04.2 LTS (x86_64), hosted on a single-
socket AMD EPYC 7313P CPU (3.0 GHz, 16 cores, 2 threads/core). Training data was collected and
processed entirely on a CPU.

7 Results

We now evaluate AccelerQ’s ability in optimising hyperparameters of QE implementations to im-
prove accuracy and efficiency across 16 Hamiltonian systems. We analysed results for QE predictor
deployment to generate new hyperparameters suggestions ((E), Figure 5) in §7.1, and execution
of QE implementations with these hyperparameters ((F), Figure 5) in §7.2. Model deployment ran
on an exact classical simulator, while QEs execution with optimised hyperparameters used an
MPS-based quantum simulator (§5). Full data and tables are available in our artifact §12.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators 354:17

7.1 RQ;: Model Deployment

We deployed the two models on 16 Hamiltonian systems (§6.2). Figure 6 (ADAPT-QSCI) and Fig-
ure 7 (QCELS) present the hyperparameter values under three configurations: DEFAULT (DEF),
OPT-ML-Only (OPT), and FULL-AccelerQ (TEST). The x-axis labels these configurations for each
hyperparameter. The default hyperparameters (DEF) are listed in Table 1, while OPT and TEST val-
ues were obtained using OPT-ML-Only and FULL-AccelerQ configurations, respectively. Columns
A-TI correspond to the predicted optimal hyperparameters for ADAPT-QSCI, and Columns A-E for

1%107 10~ 300 ‘ %
1x10% i
\ 4
1,(103_
&

1x10"

H
+
)
<m
B

*—0

200+ ®

o
1
| @&
@

1y 8
[« 1T

o o

AIAS v, 0,0,0,0,0
AT

N A

1%107'4

’ ¥
1%1034 i

IS
1
o
\ 4
u

Hyperparameters Values
Hyperparameters Values
e
Hyperparameters Values

N
h

3
2
L
ol
100 Wb
g
;
o

SRR

T T T T
KA AFAPN
A& RN <N A 3 D
F &L FEE T SE

T T
v <
& AV A &
FELEF L F L F S F K&
Hyperparameters Hyperparameters Hyperparameters

(i) (i) (iif)

Fig. 6. ADAPT-QSC/I’s Hyperparameters: Default (DEF) vs predicted values. (i)’s Y-axis in log scale,
log,,. X-axis labels: A: num_pickup, B: coeff_cutoff, C: self_selection, D: iter_max, E: sampling_shots, F: atol,
G: final_sampling_shots_coeff, H: num_precise_gradient & I: reset_ignored_inx_mode.

1x10%3—
7]
L]
” 1x1024 | | @ é | g
s T e &
© 1x1004— | 1 || & —
S —&v [B 5
4 o
8 102 o v 2
: :
£
S 1x104 ° =
<
Q.
S
g 1x10%
1%10-84 '1'° '19
1%10-10 Hamiltonian (System)
éS&Vévéeq‘\eé\¢é(Jq&oé\oéoq‘\oéoé@q&@é\@ -=- #terms -=- ADAPT-QSCI default = QCELS default
QYO AV O’ Q7 O’ AV O™ OV O° & = Hamiltonian QP size ~ -=- ADAPT-QSCI optimised -* QCELS optimised
Hyperparamers - Reduced size for ML ADAPT-QSCI wt tests QCELS wt tests

Fig. 7. QCELS’s Hyperparameters: Default Fig. 8. Number of Hamiltonian terms (Y-axis, log,

(DEF) vs predicted values. Y-axis in log scale, scale) for Q predictor queries and QE implementa-
log,,. X-axis labels: A: delta_t, B: n_Z, C: tion executions across different systems (X-axis), shown
ham_terms, D: ham_cutoff and E: alpha. as raw and compressed sizes.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

354:18 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

QCELS. Note that the value presented in Figure 6 for the predicted iter_max was capped during
execution’ to ensure that we do not have unlimited resources.

Figure 6 shows that OPT and TEST generally select higher values than DEF, except for stopping-
related parameters (final_sampling_shots_coeff and num_precise_gradient), which remain
closer to DEF. OPT typically reduced per-iteration precision, lowering sampling_shots while in-
creasing atol, coeff_cutoff, and iter_max, leading to more total iterations. When both iter_max
and sampling_shots were pushed to maximum values, ignoring their correlation, execution was
capped, resulting in fewer iterations in practice. TEST did not exhibit this behaviour: it generally
increased shots per iteration while keeping iteration counts moderate. Except that, TEST commonly
aligned around the same range of values as OPT but aligned more with DEF on self_selection
and iter_max, likely due to the constraints imposed by the hyperparameters tests, and consistently
favoured higher final_sampling_shots_coeff, improving prediction quality.

Figure 7 shows that OPT tended to select higher values for n_z and delta_t, with no clear
preference for alpha and favoured increasing the number of terms retained in the Hamiltonian
(except for 20qubits_01 and 20qubits_03). This may seem to be contradicted by also favouring larger
ham_cutoff values to decrease the number of terms retained in the Hamiltonian. Yet, for systems
at this scale, the ham_cutoff value was always small enough to remove no additional terms beyond
those excluded by ham_terms. TEST was generally aligned with OPT but utilised a narrower value
range, often selecting from the higher end. Exceptions were ham_terms and alpha, where TEST
chose values lower than OPT and DEF.

Hamiltonian Systems Size. The QE implementations truncate Hamiltonians based on hyperparam-
eters such as coefficient cutoff and number of terms (Table 1). Thus, the choices in Figure 6 and
Figure 7 under DEF, OPT, and TEST affected Hamiltonian size, which vary in their initial size and
complexity (§6.2). We examined this effect to reveal structural differences and assess the relative
difficulty of problem instances.

Figure 8 shows the individual number of terms in each Hamiltonian system in FermionOperator!?
format ("#terms” line) and the number of terms utilised in the QE predictor models during data
augmentation, training and deployment of the models ("Reduced size for ML” line). The remaining
lines capture sizes after the Jordan-Wigner transformation [65], including both the untruncated
Hamiltonian (“Hamiltonian QP size”) and its truncated form under the three hyperparameter con-
figurations (DEF, OPT, TEST) of ADAPT-QSCI and QCELS. The ML pipeline used different cutoffs
and compression than the Jordan-Wigner ones. Open-source molecular Hamiltonians are marked
with an asterisk. Across all Hamiltonian representations in Figure 8, the open-source molecular
Hamiltonians contain far fewer terms (< 46) than the QunaSys Hamiltonians (> 54k). Even after
compression, the molecular Hamiltonians remained much smaller, indicating structural differences
between the sets.

RQ; Answer. We observed clear shifts in hyperparameter values. In ADAPT-QSCIL, OPT and
TEST typically increased coeff_cutoff and iter_max, but TEST increased sampling_shots
to kept iter_max moderate. In QCELS, OPT and TEST raised ham_cutoff but aimed to retain
more Hamiltonian terms similar to DEF. These effects were pronounced on large QunaSys
Hamiltonians (> 54k terms) than on smaller open-source ones (< 46 terms).

9The platform automatically stopped the computation once the maximum number of shots, 10 000 000, was reached, which
is iter_max=1e7/sampling_shots; same limitation of the maximum number of shots applied to QCELS and is common in
quantum platforms.

Othe chemistry form, https://github.com/quantumlib/OpenFermion/tree/master

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

https://github.com/quantumlib/OpenFermion/tree/master

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators

Energy Level Predicted Value

Number of Iterations
160 -8 ADAPT-QSCI - Configuration 1
~&- ADAPT-QSCI - Configuration 2
- ADAPT-QSCI - Configuration 3
- QCELS - Configuration 1
QCELS - Configuration 2
QCELS - Configuration 3

140

Error Rate in %

354:19

1204

100+

2 -::—-«-—-—-——-—-—»
B]

]
raam
:

Error (%)

-204 \'/—'——\4
gl

Lowest Energy Level Prediction
Number of Iterations to Prediction

404

- ADAPT-QSCI - Configuration 1
-+ ADAPT-QSCI - Configuration 2
|- ADAPT-QSCI - Configuration 3 204
- QCELS - Configuration 1
QCELS - Configuration 2
QCELS - Configuration 3

T
T T T T T T T

SPF
PRI C TP L E L RO Q S @ >) SFP >

-8 ADAPT-QSCI - Configuration 1
4~ ADAPT-QSCI - Configuration 2
48 ADAPT-QSCI - Configuration 3
4@ QCELS - Configuration 1
QCELS - Configuration 2

QCELS - Configuration 3
T T T T

e e e e S S
SEESTESTSS
O o & X o o o (N N
D ol

I DL VNI IO IO
P R PP P PP F PP O PP
Vv

.
O
060‘96‘90000»0‘0»
Q0 At A A e i a0

Systems (Hamiltonians) Systems (Hamiltonians) Systems (Hamiltonians)

(i) (if) (iii)

Fig. 9. Comparison of ADAPT-QSCI and QCELS, with 3 different configurations for each.

7.2 RQ;-RQs: Execution with Different Hyperparameters

We ran six experiments in total, using the DEF, OPT, and TEST values of hyperparameters from
RQ; for ADAPT-QSCI (Figure 6) and QCELS (Figure 7), as follows:

e ADAPT-QSCI — Configuration 1. ADAPT-QSCI with default hyperparameters (DEFAULT).
ADAPT-QSCI - Configuration 2. ADAPT-QSCI with OPT-ML-Only predicted hyperparameters.
ADAPT-QSCI - Configuration 3. ADAPT-QSCI with AccelerQ as in §4 (FULL-AccelerQ).
QCELS - Configuration 1. QCELS with default hyperparameters (DEFAULT).

QCELS - Configuration 2. QCELS with OPT-ML-Only predicted hyperparameters.
e QCELS - Configuration 3. QCELS with AccelerQ as in §4 (FULL-AccelerQ).

Each experiment was repeated 10 times to account for variance, with the best-performing (lowest
valid) result reported. FULL-AccelerQ was executed only twice per Hamiltonian system—far fewer
opportunities for improvement—placing it at a disadvantage compared to other configurations.
This limitation was necessary due to the high computational cost: evaluating a single Hamiltonian
with 10 repetitions can take ~ 2 months on CPU'!. Overall, these settings (2 QF implementations x
3 configurations, repeated 10 or 2 times) yielded 16 X 2 X 2 X 10 + 16 X 1 X 2 X 2 = 704 executions,
enabling a systematic comparison across Hamiltonians, configurations, and algorithmic behaviours.

Figure 9 summarises the results of executing ADAPT-QSCI and QCELS on a quantum simulator.
We evaluated 16 Hamiltonians of 20-, 24-, and 28-qubit systems (x-axis). Results for 28-qubit QCELS
are intentionally omitted, as they appeared to be likely invalid, discussed further in §8. Error rates
in Figure 9(iii) are reported only for QunaSys Hamiltonians, since reference values for open-source
molecular Hamiltonians were unavailable at the time of the experiments. At that stage, we operated
with is_classical:=False (see §5). We evaluated three metrics:

e Figure 9 (i) reports the minimum energy level estimated;

1GPU runs could have reduced runtime substantially, but we had access only for a few days, insufficient for full experiments.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

354:20 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

e Figure 9 (ii) presents the number of iterations required to reach estimation;
e Figure 9 (iii) shows the error rate in %, computed for Hamiltonians with known solutions [75, 77].

Figure 9 (i) shows that default parameters (DEFAULT) performed better for the open-source
molecular Hamiltonian systems (< 46 terms), while QunaSys’s Hamiltonians (> 54, 000 terms)
performed better with the AccelerQ optimisation (Configurations 2-3). QunaSys’s datasets (10
systems): ADAPT-QSCI Configuration 2 achieved the best result in five Hamiltonian systems,
followed by ADAPT-QSCI Configuration 3 in four Hamiltonian systems, and QCELS Configuration
2 in one Hamiltonian system. No other configurations, including the defaults, achieved top perfor-
mance. Dataset of commonly used open-source molecular Hamiltonians (6 systems): ADAPT-QSCI
Configurations 1 and 2 performed best for system 24qubits_06, ADAPT-QSCI Configuration 3 for
20qubits_05 and ADAPT-QSCI Configuration 1 for the rest of the four systems.

Figure 9 (ii) presents the number of iterations used by each QE implementation to approximate the
lowest eigenvalue. All executions remained below 150 iterations, even when higher iteration counts
were permitted by the hyperparameter settings (shown in Figure 6 and Figure 7). In general, QCELS
required fewer iterations on average, 9.0 for Configuration 1 (DEFAULT), 13.69 for Configuration
2 (OPT-ML-Only), and 13.69 for Configuration 3 (FULL-AccelerQ), compared to ADAPT-QSCI,
which averaged 51.25, 41.31, and 50.37, respectively. While this reflects the fundamentally different
nature of the two algorithms, FULL-AccelerQ commonly required slightly more iterations than
OPT-ML-Only.

Figure 9 (iii) presents the error rate for QunaSys’s datasets (10 systems). For 20-qubit systems,
ADAPT-QSCI Configuration 3 (FULL-AccelerQ) achieved the lowest average error at 3.77%, fol-
lowed by ADAPT-QSCI Configuration 2 (OPT-ML-0Only) at 4.20%, and ADAPT-QSCI Configuration
1 (DEFAULT) at 4.46%. Whereas QCELS OPT-ML-Only reached 6.55%, while DEFAULT had 7.55%, and
FULL-AccelerQ showed negligible improvement against the default, with an average error of 7.52%.
For the 28-qubit systems, we excluded QCELS due to instability at this scale (see §8). ADAPT-QSCI
FULL-AccelerQ achieved the lowest average error at 6.32%, followed by OPT-ML-Only at 6.39%,
and DEFAULT at 6.51%.

Answer to RQ,: Ability of Optimisation via ML alone to Accelerate and Improve QE Executions
(Configuration 1 vs Configuration 2). Results indicate that Configuration 2 (OPT-ML-Only) provides
limited improvements when generalising from small (<16 qubits) to larger (20-28 qubits) systems.
While it outperformed its default counterpart (DEFAULT) on certain QunaSys Hamiltonian systems,
the improvements in accuracy remained relatively modest. These findings suggest that while
generalisation is possible, its effectiveness depends on the Hamiltonian’s complexity and structure.

(QunaSys’s datasets, 20-qubit) OPT-ML-Only exhibited greater error variability (0.83%-8.53%)
compared to DEFAULT (4.28%-10.14%). While QCELS OPT-ML-0nly achieved the lowest error (0.83%)
within just seven iterations for 20qubits_01 system, ADAPT-QSCI OPT-ML-Only performed bet-
ter in other cases. (Open-source datasets, 20qubits_05 and 24-qubit) ADAPT-QSCI DEFAULT
outperformed all other configurations, suggesting that for Hamiltonians with relatively few terms,
hyperparameter tuning does not enhance accuracy. (QunaSys’s datasets, 28-qubit) ADAPT-
QSCI OPT-ML-0nly outperformed DEFAULT, often achieving error reductions of an order of mag-
nitude. In contrast, DEFAULT showed only marginal advantages in cases where they outperformed
OPT-ML-Only (e.g. 0.x vs. 0.0x error differences), suggesting that hyperparameter optimisation can
lead to substantial accuracy gains, even if not universally superior to defaults.

RQ; Answer. OPT-ML-Only showed limited overall gains, performing better primarily with
Hamiltonians containing hundreds of terms. Likely, a more refined model incorporating Hamil-
tonian characteristics may be necessary for assessing the impact of optimisation.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators 354:21

Answer to RQs: Assessing additional efforts beyond ML (Configuration 2 vs Configuration 3). Our
evaluation shows that Configuration 3 (FULL-AccelerQ) generally outperforms Configuration 2
(OPT-ML-Only) in terms of error rate, though it does not always achieve the best result. ADAPT-
QSCI: FULL-AccelerQ achieved the lowest error rates for QunaSys’s datasets: 3.77% (SD +0.8)
and 6.32% (SD +0.32), for 20- and 28-qubit systems, respectively, surpassing OPT-ML-Only: 4.20%
(SD #1.71) and 6.39% (SD +0.24). QCELS: FULL-AccelerQ did not yield any gains, possibly due
to either hyperparameter values or hyperparameter tests not significantly affecting how QCELS
internally operates; for 20-qubit systems, FULL-AccelerQ was 7.52% (SD +1.87) while OPT-ML-Only
was 6.55% (SD +3.27). This was unexpected: we implemented QCELS ourselves and expected greater
control over its behaviour, unlike ADAPT-QSCI, whose implementation details were less familiar
to us. Yet, ADAPT-QSCI is designed for NISQ devices with tunable parameters that expose more
learnable patterns, while QCELS is less sensitive to initialisation and more constrained by physics-
based evolution, reducing the benefits of FULL-AccelerQ. For open-source datasets, results were
inconclusive: OPT-ML-Only outperformed FULL-AccelerQ in some cases, and vice versa.

RQs Answer. FULL-AccelerQ showed more consistent performance, with its genetic algorithm
and test filtering refining hyperparameter selection, with conclusive improvements across com-
plex Hamiltonians with hundreds of terms. For open-source datasets of Hamiltonians with < 46
terms, however, no consistent gains were observed with either OPT-ML-Only or FULL-AccelerQ.

Answer to RQy: Scalability of Configurations 1, 2 and 3. We compare the performance of all three
configurations (DEFAULT, OPT-ML-Only, FULL-AccelerQ) to draw overall conclusions about their
effectiveness and scalability. Scalability was assessed by measuring iteration counts and error rates
(only for QunaSys datasets) of Hamiltonian systems of increasing size.

ADAPT-QSCI: OPT-ML-Only required fewer iterations on average than FULL-AccelerQ or
DEFAULT (see Figure 9 (ii) discussion), with a general trend of using fewer iterations as the number
of qubits increased from 20- to 28-qubits, indicating manageable scaling. We observed a reduction
in error from 5.48% (SD +1.09) of the defaults to 5.3% (SD %1.63) with OPT-ML-Only and further to
5.05% (SD %1.46) with FULL-AccelerQ. With respect to the system’s size, error rates, however, rose
from ~ 2-5% to ~ 6-7% (Figure 9 (iii)). QCELS: Iteration counts were low across configurations
(Figure 9 (ii)) with no clear trend. For 20-qubit, OPT-ML-Only optimisation yielded limited error
reduction, from 7.5% (SD +1.85) to 6.5% (SD +3.27), with no gain with FULL-AccelerQ for QCELS.
In 28-qubit systems, AccelerQ failed to scale, as discussed in detail in §8.

p

RQ4 Answer. Compared to ADAPT-QSCIDEFAULT, OPT-ML-Only generally reduced the iteration
count, whereas FULL-AccelerQ slightly increased it but delivered higher accuracy. By contrast,
QCELS OPT-ML-Only and FULL-AccelerQ raised the iteration count by about 52% (from 9 to
13.69), though the values remain within a sensible range. DEFAULT configurations showed the
lowest variance, offering stability at the expense of accuracy, while both OPT-ML-Only and
FULL-AccelerQ reduced error rates, indicating the potential of optimisation.

L 4

Answer to RQs. The results show that variance in the final energy in QE implementations across
Hamiltonians tends to decrease for QunaSys’s dataset and to increase for the open-source datasets
as system size increases. A similar trend was observed in error rates. Overall comparisons of the
three configurations (DEFAULT, OPT-ML-Only, FULL-AccelerQ) were presented earlier (Figure 9).
Here, we analyse the results per QE separately to highlight additional trends. ADAPT-QSCI:
Across the benchmarked Hamiltonians, the three configurations achieved 5, 6, and 6 wins for
DEFAULT, OPT-ML-Only, and FULL-AccelerQ, respectively. This indicates that while OPT-ML-Only

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

354:22 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

1.0 — fit: E=-3.997
— fit: E=-5.592
— fit: E=-2.276

—x- data

081 |
\

I

06 L
\

0.4+

Re(U(t)
o
1=
S
Re(U(t))

-0.25 1 021

~0.50 0.0 1

— fit: E=-27.485
_0.75 4 — fit: E=-26.306
— fit: E=-20.358
_1.004 ~*- data

T T T T T T T T T T T T
0.0 0.5 10 15 2.0 25 0.0 0.5 10 15 2.0 2.5

Fig. 10. The original high-frequency fit uses a pe- Fig. 11. An updated fitting procedure which pre-
riod of approximately the spacing between the data. vents high frequency fits, but does not significantly
Damped oscillations were observed in the simulated improve the results in this case because of the error
quantum algorithm’s output. in the collected time evolution data.

and FULL-AccelerQ often outperformed the defaults, no single configuration dominated consis-
tently across all systems. Instead, the advantage appears to depend on the Hamiltonian characteris-
tics, with FULL-AccelerQ showing slightly stronger error rates than OPT-ML-Only, as discussed
in RQs. QCELS, 20- & 28-qubits: The corresponding win counts were 2, 7, and 2 for DEFAULT,
OPT-ML-Only, and FULL-AccelerQ. Here, OPT-ML-Only clearly outperformed the other two con-
figurations, suggesting that unconstrained hyperparameter optimisation had the strongest impact
in this implementation (discussed already in RQs). QCELS failed to scale effectively to 28-qubit
systems as discussed in §8.

Furthermore, several Hamiltonian systems (particularly from the QunaSys dataset) were sensitive
to non-default hyperparameters, occasionally crashing the ADAPT-QSCI and QCELS implementa-
tions. This can impact the reproducibility of specific best results tied to particular hyperparameter
values. Nevertheless, given the significant overall reduction in error rates, even slight variations in
hyperparameters are still likely to improve outcomes over the default configuration. We expand on
these issues in §9.

RQs5 Answer. Overall, the results remain inconclusive, with observed differences driven more by
the underlying QE implementation and Hamiltonian system complexity than by the optimisation.

8 Discussion

Scalability analysis of the optimisation procedure is hampered by the limitations of current quantum
platform simulators. Beyond comparing the results to known reference values, we also examined
the underlying fitting process to assess whether the observed outcomes were achieved for the right
reasons, rather than by chance, as happened with 28-qubit systems from the QCELS results. We
excluded these results and elaborated on the findings that led to this decision.

For larger system sizes, the time to evaluate a large circuit can quickly become prohibitive for
running many algorithm iterations, even with access to large compute resources and sufficient
memory to store the system’s state. These challenges prevented the successful evaluation of the
QCELS implementation at 28 qubits with a strong damping effect on the oscillations of time evolving
expectation value. Possible causes of such an effect could include the Trotter error [83, 88] introduced
by the implementation of the Hamiltonian evolution unitary or the truncation of entanglement

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators 354:23

between qubits in the Matrix Product State (MPS) simulator [6, 67, 105, 106]. The results we obtained
when using 28 qubits in the MPS simulator are shown in Figure 10, a decay of the oscillation can be
observed in the data which results in an erroneous fit with a frequency close to that of the spacing
between the data points. In Figure 11, we forbid a fit with a period smaller than the spacing of
the data, however, the decay of the oscillations continues to prevent a good fit to the data. QCELS
provides an elegant approach to solving a Hamiltonian by its direct encoding of time evolution, but
its performance is highly sensitive to simulation fidelity and algorithmic discretisation, making it
difficult to tune. In comparison, the ADAPT-QSCI implementation continues to work well up to 28
qubits, with its formulation as a classical solver acting in a subspace defined from the measurements
on a quantum computer being well suited to working at these moderate system sizes. This approach
also works well at mitigating the impact of inexact quantum evolution from noise on a quantum
device or error in the classical simulation of the quantum algorithm.

9 Threats to Validity

Internal Validity. Our results are subject to several internal threats. First, we observed that QE
implementations are sensitive to the Python environment. Minor differences in library versions
could lead to misleading evaluation and results; e.g. with ADAPT-QSCI and program seed 24qubit_07:
we observed that the total number of iterations was too low (i.e. #4). When reverting'? the Python
libraries this number became sensible (i.e. #21). Second, the QE implementations were not always
able to support all hyperparameter values, resulting in execution failures; e.g. Python execution
was out-of-resources with ADAPT-QSCI (24qubit_07) or a segmentation fault occurred with QCELS
(20qubits_04) and ADAPT-QSCI (20qubits_03) in the quantum simulator'®. We carefully documented
and controlled these environments to mitigate such issues, including a Docker container and a
requirement file. We reran failed cases to obtain the required number of successful runs in our
evaluation. Lastly, we tested AccelerQ beyond the final output of the QF implementations because
even when the predicted lowest eigenvalue appears low and within acceptable bounds, it may stem
from the wrong reasons, as discussed in §8.

External Validity. Challenges in understanding quantum information and the limited availability
of suitable datasets, even after data augmentation, make it difficult to predict when and how ML
generalisation will succeed. Nonetheless, ML predictions can significantly optimise costly quantum
executions and improve the accuracy of the results. Further, the generalisability of our findings is
constrained by the use of a quantum simulator, which may not fully reflect real-world quantum
hardware behaviour in terms of cost and noise. In our evaluation, we restricted quantum resources
in simulation to mirror better quantum hardware (§5), but more sophisticated and realistic quantum
simulators (general behaviour and noise) are required.

Transferability. AccelerQ is adaptable to different datasets, with the primary limitation being the
Hamiltonian size. Our approach can be ported to other platforms, provided they are open-source'*
and, modulo some modifications. These, however, required appropriate input: 1) Adapting to other
QE implementations requires a hyperparameters generator tailored to the target implementation,
re-running the full pipeline of data augmentation and model training, which is also implementation-
specific; and 2) Adapting to other problem domains requires a set of small Hamiltonian systems
(typically less than 16 qubits) relevant to that domain, with classically computed solutions for
training. Additionally, as discussed in the internal validity section, we observed that QE implemen-
tations are sensitive to Python package versions. Even minor version mismatches (e.g. in xgboost,

12We reverted xgboost, scikit-learn, numpy, cirq and qiskit tobe 2.1.0,1.5.0,1.23.5,1.1.0and 0.41.1.

3This error came from a method call to add_single_qubit_gate in quri_parts.
4When selecting a quantum platform, consider this requirement and its compatibility and transferability to other platforms.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

354:24 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

numpy, or qiskit) can lead to unoptimised behaviour. Therefore, pinning package versions and
containerisation (e.g. via Docker) are required for reproducibility. More general recommendations
related to reproducibility are summarised below.

ML holds significant potential for optimising quantum calculations but remains non-trivial. A key
limitation we identified is the absence of unified quantum datasets tailored for training ML models;
developing such datasets would greatly benefit future research and improve the transferability of
ML-based approaches like AccelerQ.

Training, deploying and evaluating a model directly with the Hamiltonian representation of
quantum systems appears promising. However, small variations in the quantum training data
significantly impacted model performance. It is therefore crucial to validate datasets with expert
knowledge. For instance, cut-off strategies and padding with zeros for Hamiltonian systems with
fewer than 100 terms performed poorly due to sparsity (as in §7). Further, training on datasets
with varying numbers of qubits substantially influenced results (like in §8). A deeper investigation
into the properties required for validating quantum datasets would benefit industry and academia.
Another key challenge is the limited availability of comprehensive noise data from quantum
hardware, restricting the ability to transition from simulation to real hardware.

10 Related Work

Challenges in Quantum Computing. QC was conceptualised initially to simulate quantum mechanics
using computers “built of quantum mechanical elements which obey quantum mechanical law” [31].
Later, it was found that QC could have several potential applications and offer significant speed-up
over classical computing [7-9, 13, 23, 37]. In 1994, Shor’s proposal of a polynomial-time algorithm
for prime factorization and discrete logarithms on a quantum computer raised enormous interest
due to its potential threat to modern RSA cryptosystems [81]. Soon after, Grover introduced a
fast database search on quantum computers [37] that promised quadratic speed-up over the best
classical algorithm. The resulting potential speed-up is often referred to as “quantum supremacy”
[5]. Several studies apply SE techniques to optimise quantum computing [33, 35]. Noticeably, testing
[60, 82], debugging [58, 68, 80], verification [52, 100] approaches, and efficient synthesis techniques
[47, 69, 90] have been found to be beneficial in quantum software development [60, 68, 82, 100].

Demonstrating quantum supremacy on real hardware remains a long-standing challenge, es-
pecially at a scale where quantum devices would solve real-life calculations. Although quantum
supremacy seems difficult to achieve soon, NISQ algorithms—Imperfect hardware is often called
Noisy Intermediate-Scale Quantum (NISQ) devices—are a prominent example that hybrid systems
combining small quantum circuits with classical computations could present some computational
advantages, i.e., a quantum advantage [72]. Most agree this stage of QC will likely last for the next
few years if not decades, and refer to it as the NISQ era [72]. Variational Quantum Algorithms (VQA)
are the most common example of an efficient combination of a reduced quantum circuit inside a
classical optimisation loop [87]. Other algorithms use classical optimisation to enhance quantum
calculations, such as QCELS [24, 25] that uses a fitting procedure to extract information from
quantum calculations. Because of their prominent role in modern Quantum Computing research
and industrial applications, we chose to focus our study on Variational and QCELS Algorithms.
Machine Learning for Quantum Software Engineering. ML algorithms are increasingly used to
improve and automate SE tasks [27, 39, 79, 92, 94, 95, 101, 104], especially after the advent of
Large Language Models (LLM), with common applications in SE, including optimisation, code
generation, bug detection and automated testing [11, 14, 21, 28, 45, 91]. Furthermore, connections
between ML and QC have been broadly explored, both to optimise ML with QC and to optimise
QC with ML [30, 70, 93]. Yet, the applications of ML in QC [78] remain a very new and open

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators 354:25

field of research. While quantum machine learning (QML) offers potential speedups in ML tasks
[89], very recent work also demonstrates promising results in applying ML to optimise quantum
computations [16, 53]. Nevertheless, these methods are usually applied on the quantum circuit
itself, rather than the quantum implementation (or the program), on a few qubits [53], and are not
Hamiltonian-specific. Even approaches that leverage Hamiltonian information within variational
eigensolvers [64] remain limited to QE-specific hyperparameter tuning. AccelerQ takes a different
approach from common QE optimisation methods—that either optimise without incorporating
the target Hamiltonian into the process or are restricted to fixed system sizes [16, 86, 102], or
rely on manual code rewriting, or even complete reimplementation, in the hope of improving
performance [76, 77])—by integrating the Hamiltonian into the optimisation process, scaling beyond
few-qubit systems, and avoiding relying on manual reimplementation.

11 Conclusion

In this paper, we presented an interdisciplinary approach that merges SE and ML paradigms to
enhance the performance of quantum algorithms using quantum simulators. We designed and
implemented a new framework, AccelerQ, as a prototype tool to predict near-optimal hyperpa-
rameters for quantum algorithms. We evaluated AccelerQ on two implementations (ADAPT-QSCI
or QCELS), training and deploying relatively small-scale models to improve performance by sug-
gesting better hyperparameters. Our results suggest that the model’s predictive ability depends on
the Hamiltonian’s characteristics rather than solely on a specific implementation.

Beyond optimising complex quantum simulations, AccelerQ also provides deeper insights into
the underlying physics of the studied systems. For instance, by tuning the number of relevant terms
of the Hamiltonians (through coefficient cut-off points), we can identify relevant correlation terms.
Future Work. While our evaluation includes three representative configurations (FULL-AccelerQ,
OPT-ML-Only, DEFAULT) for an initial ablation study, we acknowledge the absence of broader
empirical comparisons with prior work. Each full configuration requires 3-6 months of computation
across multiple CPU machines, which constrained our ability to explore the experimental space
exhaustively. Expanding the comparative evaluation to include other methods and variants is a
direction for follow-up work.

Besides comparison against similar methods and other variational algorithms’ implementations
when experimentally possible, this methodology could be extended to inferring more complex
chemistry-related terms, such as the ansatz, a key bottleneck in quantum chemistry simulations.
Fine-tuning these properties is particularly challenging, as small structural changes can significantly
impact the quality of quantum simulations. Addressing this complexity requires optimisation beyond
hyperparameters, suggesting that ML could play a broader role in refining quantum algorithm
execution at multiple levels. The method presented in this work represents an early step toward
this direction and may pave the way for integrating ML and quantum algorithms into more robust
and scalable QC applications.

12 Data Availability Statement

Software, setups, and datasets are on Zenodo [10]. The artifact, deemed
reusable by the AEC, includes modular code, partial evaluations, full pipelines, pre-trained models,
scripts, Docker for reproducibility, and guidance on reproducing results with other QE implemen-
tations, in addition to those presented here.

Author Contributions. The authors are listed alphabetically and contributed equally to this work.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

https://zenodo.org/records/16878135

354:26 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

Acknowledgments. The authors are listed alphabetically. We thank CloudLab [26] for providing the
infrastructure that enabled building the two QE predictors for ADAPT-QSCI and QCELS. This
work was supported by EPSRC projects VSL-Q (EP/Y005244/1), RoaRQ (Investigation 009), and
ModeMCQ (EP/W032635/1), the QAssure project from Innovate UK, and King’s Quantum grants
from King’s College London.

References

[1] Amine Mohamed Aboussalah, Changhun Chi, and Chang-Gun Lee. 2023. Quantum computing reduces systemic risk
in financial networks. Scientific Reports 13 (March 2023), 3990. https://doi.org/10.1038/s41598-023-30710-z

[2] Giovanni Acampora, Ferdinando Di Martino, Alfredo Massa, Roberto Schiattarella, and Autilia Vitiello. 2023. D-NISQ:
A reference model for Distributed Noisy Intermediate-Scale Quantum computers. Inf. Fusion 89, C (Jan. 2023), 16-28.
https://doi.org/10.1016/j.inffus.2022.08.003

[3] Mohamed Ali al Badri, Edward Linscott, Antoine Georges, Daniel J. Cole, and Cédric Weber. 2020. Superexchange
mechanism and quantum many body excitations in the archetypal di-Cu oxo-bridge. Communications Physics 3, 1
(2020), 4. https://doi.org/10.1038/s42005-019-0270-1

[4] Amazon Web Services. 2020. Amazon Braket: Developer Guide. https://docs.aws.amazon.com/braket/index.html.

[5] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo,
Fernando GSL Brandao, David A Buell, et al. 2019. Quantum supremacy using a programmable superconducting
processor. Nature 574, 7779 (Oct. 2019), 505-510. https://www.nature.com/articles/s41586-019-1666-5

[6] Thomas Ayral, Thibaud Louvet, Yiging Zhou, Cyprien Lambert, E. Miles Stoudenmire, and Xavier Waintal. 2023.
Density-Matrix Renormalization Group Algorithm for Simulating Quantum Circuits with a Finite Fidelity. PRX
Quantum 4 (Apr 2023), 020304. Issue 2. https://doi.org/10.1103/PRXQuantum.4.020304

[7] Charles H. Bennett and Gilles Brassard. 1987. Quantum public key distribution reinvented. SIGACT News 18, 4 (jul
1987), 51-53. https://doi.org/10.1145/36068.36070

[8] Charles H. Bennett, Gilles Brassard, Seth Breidbart, and Stephen Wiesner. 1983. Quantum Cryptography, or Unforge-
able Subway Tokens. In Advances in Cryptology, David Chaum, Ronald L. Rivest, and Alan T. Sherman (Eds.). Springer
US, Boston, MA, 267-275.

[9] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters. 1993.
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70
(Mar 1993), 1895-1899. Issue 13. https://doi.org/10.1103/PhysRevLett.70.1895

[10] Avner Bensoussan, Elena Chachkarova, Karine Even Mendoza, Sophie Fortz, and Connor Lenihan. 2025. Artifact
of AccelerQ: Accelerating Quantum Eigensolvers With Machine Learning on Quantum Simulators. Zenodo. https:
//doi.org/10.5281/zenodo.16878135

[11] Harel Berger, Aidan Dakhama, Zishuo Ding, Karine Even-Mendoza, David Kelly, Hector D. Menendez, Rebecca

Moussa, and Federica Sarro. 2023. StableYolo: Optimizing Image Generation for Large Language Models. Springer,

Cham, 133-139.

Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias

Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek,

and Alan Aspuru-Guzik. 2022. Noisy intermediate-scale quantum (NISQ) algorithms. Rev. Mod. Phys. 94 (Feb 2022),

015004. Issue 1. https://doi.org/10.1103/RevModPhys.94.015004

Gilles Brassard, Peter Hoyer, and Alain Tapp. 2016. Quantum Algorithm for the Collision Problem. Springer New York,

New York, NY, 1662-1664. https://doi.org/10.1007/978-1-4939-2864-4_304

Alexander E. I. Brownlee, James Callan, Karine Even-Mendoza, Alina Geiger, Carol Hanna, Justyna Petke, Federica

Sarro, and Dominik Sobania. 2024. Enhancing Genetic Improvement Mutations Using Large Language Models. In

Search-Based Software Engineering, Paolo Arcaini, Tao Yue, and Erik M. Fredericks (Eds.). Springer Nature Switzerland,

Cham, 153-159.

[15] M. Cerezo, Martin Larocca, Diego Garcia-Martin, N. L. Diaz, Paolo Braccia, Enrico Fontana, Manuel S. Rudolph,

Pablo Bermejo, Aroosa Ijaz, Supanut Thanasilp, Eric R. Anschuetz, and Zoé Holmes. 2024. Does provable ab-

sence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing.
arXiv:2312.09121 [quant-ph] https://arxiv.org/abs/2312.09121 preprint.

Gyungmin Cho and Dohun Kim. 2024. Machine learning on quantum experimental data toward solving quantum many-

body problems. Nature Communications 15, 1 (Aug. 2024), 7552. https://www.nature.com/articles/s41467-024-51932-3

Publisher: Nature Publishing Group.

Elias F Combarro, Alberto Di Meglio Samuel Gonzalez-Castillo, and Alberto Di Meglio. 2023. A practical guide to

quantum machine learning and quantum optimization. Packt Publishing, UK.

(12

—

[13

—_

(14

=

(16

—

(17

[

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

https://doi.org/10.1038/s41598-023-30710-z
https://doi.org/10.1016/j.inffus.2022.08.003
https://doi.org/10.1038/s42005-019-0270-1
https://docs.aws.amazon.com/braket/index.html
https://www.nature.com/articles/s41586-019-1666-5
https://doi.org/10.1103/PRXQuantum.4.020304
https://doi.org/10.1145/36068.36070
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.5281/zenodo.16878135
https://doi.org/10.5281/zenodo.16878135
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1007/978-1-4939-2864-4_304
https://arxiv.org/abs/2312.09121
https://arxiv.org/abs/2312.09121
https://www.nature.com/articles/s41467-024-51932-3

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators 354:27

(18]
[19]

[20]

[21]

[22

—

(23]

[24

flan)

(25

—

(26

—

[27

—

[28

=

[29

—

(30]

(31]

Connorpl. Accessed: July 4, 2024. QCELS_for_QAGC. https://github.com/Connorpl/QCELS_for_ QAGC.

S. Consul-Pacareu, R. Montafio, Kevin Rodriguez-Fernandez, Alex Corretgé, Esteve Vilella-Moreno, Daniel
Casado-Fauli, and Parfait Atchade-Adelomou. 2023. Quantum Machine Learning hyperparameter search.
arXiv:2302.10298 [cs.LG] https://arxiv.org/abs/2302.10298 preprint.

Elbio Dagotto. 1994. Correlated electrons in high-temperature superconductors. Reviews of Modern Physics 66, 3
(1994), 763-840. https://doi.org/10.1103/RevModPhys.66.763

Aidan Dakhama, Karine Even-Mendoza, William B. Langdon, Héctor D. Menéndez, and Justyna Petke. 2023.
SearchGEM5: Towards Reliable Gem5 with Search Based Software Testing and Large Language Models. In SS-
BSE 2023, Proceedings (LNCS, Vol. 14415). Springer, San Francisco, CA, USA, 160-166. https://doi.org/10.1007/978-3-
031-48796-5_14 Best challenge track paper..

Siddharth Dangwal, Gokul Subramanian Ravi, Lennart Maximilian Seifert, Poulami Das, James Sud, and Frederic T.
Chong. 2024. COMPASS: Compiler Pass Selection For Improving Fidelity Of NISQ Applications. In 2024 IEEE
International Conference on Rebooting Computing (ICRC). IEEE, IEEE, Los Alamitos, CA, USA, 1-14. https://doi.org/
10.1109/ICRC64395.2024.10937002

David Deutsch and Richard Jozsa. 1992. Rapid solution of problems by quantum computation. Proceedings of the
Royal Society of London. Series A: Mathematical and Physical Sciences 439, 1907 (1992), 553-558.

Zhiyan Ding and Lin Lin. 2023. Even Shorter Quantum Circuit for Phase Estimation on Early Fault-Tolerant Quantum
Computers with Applications to Ground-State Energy Estimation. PRX Quantum 4, 2 (May 2023), 020331. Issue 2.
https://doi.org/10.1103/PRXQuantum.4.020331 Publisher: American Physical Society.

Zhiyan Ding and Lin Lin. 2023. Simultaneous estimation of multiple eigenvalues with short-depth quantum circuit
on early fault-tolerant quantum computers. Quantum 7 (Oct. 2023), 1136. https://quantum-journal.org/papers/q-
2023-10-11-1136/ Publisher: Verein zur Férderung des Open Access Publizierens in den Quantenwissenschaften.
Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike
Hibler, David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott,
Michael Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The design and operation of cloudlab.
In Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference (Renton, WA, USA) (USENILX
ATC ’19). USENIX Association, USA, 1-14.

Vinicius H. S. Durelli, Rafael S. Durelli, Simone S. Borges, Andre T. Endo, Marcelo M. Eler, Diego R. C. Dias, and
Marcelo P. Guimaraes. 2019. Machine Learning Applied to Software Testing: A Systematic Mapping Study. IEEE
Transactions on Reliability 68, 3 (2019), 1189-1212. https://doi.org/10.1109/TR.2019.2892517

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M. Zhang. 2023.
Large Language Models for Software Engineering: Survey and Open Problems. In IEEE/ACM International Conference
on Software Engineering: Future of Software Engineering, ICSE-FoSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE,
Los Alamitos, CA, USA, 31-53. https://doi.org/10.1109/ICSE-FOSE59343.2023.00008

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren, and Daniel Preda. 2001. A Quantum
Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292, 5516 (2001),
472-475. https://doi.org/10.1126/science.1057726 arXiv:https://www.science.org/doi/pdf/10.1126/science.1057726
D.V. Fastovets, Yu.I. Bogdanov, B.I. Bantysh, and V.F. Lukichev. 2019. Machine learning methods in quantum computing
theory. In International Conference on Micro- and Nano-Electronics 2018, Vladimir F. Lukichev and Konstantin V.
Rudenko (Eds.). SPIE, Zvenigorod, Russian Federation, 85. https://doi.org/10.1117/12.2522427

Richard P Feynman. 1982. Simulating physics with computers. International Journal of Theoretical Physics 21, 6/7
(1982), 467-488.

[32] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting machine. The Annals of Statistics 29, 5

(33

=

(34]
(35]

(36]

(37]

(2001), 1189-1232.

Ilie-Daniel Gheorghe-Pop, Nikolay Tcholtchev, Tom Ritter, and Manfred Hauswirth. 2020. Quantum DevOps: Towards
Reliable and Applicable NISQ Quantum Computing. In 2020 IEEE Globecom Workshops (GC Wkshps. IEEE, IEEE,
Taipei, Taiwan, 1-6. https://doi.org/10.1109/GCWkshps50303.2020.9367411

David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading,
MA.

Felix Greiwe, Tom Kriiger, and Wolfgang Mauerer. 2023. Effects of Imperfections on Quantum Algorithms: A Software
Engineering Perspective. , 31-42 pages. https://doi.org/10.1109/QSW59989.2023.00014

Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall. 2019. An adaptive variational
algorithm for exact molecular simulations on a quantum computer. Nature Communications 10, 1 (July 2019), 3007.
https://doi.org/10.1038/s41467-019-10988-2

Lov K. Grover. 1996. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth
Annual ACM Symposium on Theory of Computing (Philadelphia, Pennsylvania, USA) (STOC *96). ACM, New York, NY,
USA, 212-219. https://doi.org/10.1145/237814.237866

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

https://github.com/Connorpl/QCELS_for_QAGC
https://arxiv.org/abs/2302.10298
https://arxiv.org/abs/2302.10298
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1007/978-3-031-48796-5_14
https://doi.org/10.1007/978-3-031-48796-5_14
https://doi.org/10.1109/ICRC64395.2024.10937002
https://doi.org/10.1109/ICRC64395.2024.10937002
https://doi.org/10.1103/PRXQuantum.4.020331
https://quantum-journal.org/papers/q-2023-10-11-1136/
https://quantum-journal.org/papers/q-2023-10-11-1136/
https://doi.org/10.1109/TR.2019.2892517
https://doi.org/10.1109/ICSE-FOSE59343.2023.00008
https://doi.org/10.1126/science.1057726
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1057726
https://doi.org/10.1117/12.2522427
https://doi.org/10.1109/GCWkshps50303.2020.9367411
https://doi.org/10.1109/QSW59989.2023.00014
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1145/237814.237866

354:28 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

[38] Thomas Héner, Torsten Hoefler, and Matthias Troyer. 2020. Assertion-based optimization of Quantum programs.
Proc. ACM Program. Lang. 4, OOPSLA, Article 133 (Nov. 2020), 20 pages. https://doi.org/10.1145/3428201

[39] Mark Harman. 2012. The role of Artificial Intelligence in Software Engineering. In 2012 First International Workshop
on Realizing Al Synergies in Software Engineering (RAISE). IEEE, IEEE, Los Alamitos, CA, USA, 1-6. https://doi.org/10.
1109/RAISE.2012.6227961

[40] Mark Harman and Bryan F Jones. 2001. Search-based software engineering. Information and Software Technology 43,
14 (2001), 833-839. https:/doi.org/10.1016/S0950-5849(01)00189-6

[41] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based software engineering: Trends, techniques
and applications. ACM Comput. Surv. 45, 1, Article 11 (Dec. 2012), 61 pages. https://doi.org/10.1145/2379776.2379787

[42] Sabrina Herbst, Vincenzo De Maio, and Ivona Brandic. 2024. On Optimizing Hyperparameters for Quantum Neural
Networks. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), Vol. 01. IEEE, IEEE,
Los Alamitos, CA, USA, 1478-1489. https://doi.org/10.1109/QCE60285.2024.00174

[43] Dylan Herman, Connor Googin, Xin Liu, Yudong Sun, Alexey Galda, Ilya Safro, Marco Pistoia, and Yuri Alexeev. 2023.
Quantum computing for finance. Nature Reviews Physics 5 (June 2023), 450-465. https://doi.org/10.1038/s42254-023-
00603-1

[44] Nils Herrmann, Daanish Arya, Marcus W. Doherty, Angus Mingare, Jason C. Pillay, Florian Preis, and Stefan Prestel.

2023. Quantum utility — definition and assessment of a practical quantum advantage. In 2023 IEEE International

Conference on Quantum Software (QSW). IEEE, IEEE, Los Alamitos, CA, USA, 162-174. https://doi.org/10.1109/

QSW59989.2023.00028

Sen Huang, Kaixiang Yang, Sheng Qi, and Rui Wang. 2024. When large language model meets optimization. ,

101663 pages. https://doi.org/10.1016/j.swevo0.2024.101663

Tadashi Kadowaki and Hidetoshi Nishimori. 1998. Quantum annealing in the transverse Ising model. Physical Review

E 58,5(1998), 5355-5363. https://doi.org/10.1103/PhysRevE.58.5355

[47] Chan Gu Kang and Hakjoo Oh. 2023. Modular Component-Based Quantum Circuit Synthesis. Artifact for paper
"Modular Component-Based Quantum Circuit Synthesis" 7, OOPSLA1 (April 2023), 87:348-87:375. https://doi.org/10.
1145/3586039

[48] Keita Kanno, Masaya Kohda, Ryosuke Imai, Sho Koh, Kosuke Mitarai, Wataru Mizukami, and Yuya O. Nakagawa.
2023. Quantum-Selected Configuration Interaction: classical diagonalization of Hamiltonians in subspaces selected
by quantum computers. arXiv:2302.11320 [quant-ph] https://arxiv.org/abs/2302.11320 preprint.

[49] A. Yu. Kitaev. 1995. Quantum measurements and the Abelian Stabilizer Problem. arXiv:quant-ph/9511026 [quant-ph]
https://arxiv.org/abs/quant-ph/9511026 preprint.

[50] Handy Kurniawan, Laura Rodriguez-Soriano, Daniele Cuomo, Carmen G. Almudever, and Francisco Garcia Herrero.
2024. On the Use of Calibration Data in Error-Aware Compilation Techniques for NISQ Devices. In 2024 IEEE
International Conference on Quantum Computing and Engineering (QCE), Vol. 01. IEEE, Los Alamitos, CA, USA,
338-348. https://doi.org/10.1109/QCE60285.2024.00048

[51] B.P.Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B.].

Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White. 2010. Towards quantum chemistry on a quantum computer.

Nature Chemistry 2, 2 (2010), 106-111.

Liyi Li, Finn Voichick, Kesha Hietala, Yuxiang Peng, Xiaodi Wu, and Michael Hicks. 2022. Verified compilation

of Quantum oracles. Reproduction Package for "Verified Compilation of Quantum Oracles" 6, OOPSLA2 (Oct. 2022),

146:589-146:615. https://doi.org/10.1145/3563309

[53] Zikun Li, Jinjun Peng, Yixuan Mei, Sina Lin, Yi Wu, Oded Padon, and Zhihao Jia. 2024. Quarl: A Learning-Based

Quantum Circuit Optimizer. Proc. ACM Program. Lang. 8, OOPSLA1, Article 114 (April 2024), 28 pages. https:

//doi.org/10.1145/3649831

Hocheol Lim, Doo Hyung Kang, Jeonghoon Kim, Aidan Pellow-Jarman, Shane McFarthing, Rowan Pellow-Jarman,

Hyeon-Nae Jeon, Byungdu Oh, June-Koo Kevin Rhee, and Kyoung Tai No. 2024. Fragment molecular orbital-based

variational quantum eigensolver for quantum chemistry in the age of quantum computing. Scientific Reports 14, 1

(2024), 2422.

[55] William G. Macready and David H. Wolpert. 1995. No Free Lunch Theorems for Search. Technical Report 1995-02-010.
Santa Fe Institute. https://sfi-edu.s3.amazonaws.com/sfi-edu/production/uploads/sfi-com/dev/uploads/filer/3c/34/
3¢34c50b-4ea5-4715-b9eb-813fb7085504/95-02-010.pdf SFI WORKING PAPER.

[56] Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan. 2020. Quantum computational
chemistry. Rev. Mod. Phys. 92 (Mar 2020), 015003. Issue 1. https://doi.org/10.1103/RevModPhys.92.015003

[57] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven. 2018. Barren plateaus
in quantum neural network training landscapes. Nature Communications 9, 1 (16 Nov 2018), 4812. https://doi.org/10.
1038/541467-018-07090-4

(45

—

[46

—

[52

—

(54

flanr)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

https://doi.org/10.1145/3428201
https://doi.org/10.1109/RAISE.2012.6227961
https://doi.org/10.1109/RAISE.2012.6227961
https://doi.org/10.1016/S0950-5849(01)00189-6
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1109/QCE60285.2024.00174
https://doi.org/10.1038/s42254-023-00603-1
https://doi.org/10.1038/s42254-023-00603-1
https://doi.org/10.1109/QSW59989.2023.00028
https://doi.org/10.1109/QSW59989.2023.00028
https://doi.org/10.1016/j.swevo.2024.101663
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1145/3586039
https://doi.org/10.1145/3586039
https://arxiv.org/abs/2302.11320
https://arxiv.org/abs/2302.11320
https://arxiv.org/abs/quant-ph/9511026
https://arxiv.org/abs/quant-ph/9511026
https://doi.org/10.1109/QCE60285.2024.00048
https://doi.org/10.1145/3563309
https://doi.org/10.1145/3649831
https://doi.org/10.1145/3649831
https://sfi-edu.s3.amazonaws.com/sfi-edu/production/uploads/sfi-com/dev/uploads/filer/3c/34/3c34c50b-4ea5-4715-b9eb-813fb7085504/95-02-010.pdf
https://sfi-edu.s3.amazonaws.com/sfi-edu/production/uploads/sfi-com/dev/uploads/filer/3c/34/3c34c50b-4ea5-4715-b9eb-813fb7085504/95-02-010.pdf
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-018-07090-4

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators 354:29

[58] Sara Ayman Metwalli and Rodney Van Meter. 2022. A Tool For Debugging Quantum Circuits. http://arxiv.org/abs/
2205.01899 preprint.

[59] Giulia Meuli, Mathias Soeken, Martin Roetteler, and Thomas Héner. 2020. Enabling accuracy-aware Quantum
compilers using symbolic resource estimation. Proc. ACM Program. Lang. 4, OOPSLA, Article 130 (Nov. 2020), 26 pages.
https://doi.org/10.1145/3428198

[60] Andriy Miranskyy and Lei Zhang. 2019. On testing quantum programs. In Proceedings of the 41st International
Conference on Software Engineering: New Ideas and Emerging Results (Montreal, Quebec, Canada) (ICSE-NIER ’19).
IEEE, IEEE, Los Alamitos, CA, USA, 57-60. https://doi.org/10.1109/ICSE-NIER.2019.00023

[61] Charles Moussa, Yash J. Patel, Vedran Dunjko, Thomas Béck, and Jan N. van Rijn. 2024. Hyperparameter importance

and optimization of quantum neural networks across small datasets. Machine Learning 113, 4 (01 Apr 2024), 1941-1966.

https://doi.org/10.1007/s10994-023-06389-8

Patrick Mulligan, Clemens Masteran, Adam Finkelstein, Peter D. Johnson, and Oleksandr Kyriienko. 2022. Numerical

simulations of noisy quantum circuits for computational chemistry. Journal of Materials Science: Materials Theory 6, 1

(2022), 6. https://doi.org/10.1186/s41313-022-00047-7

[63] Yuya O. Nakagawa, Masahiko Kamoshita, Wataru Mizukami, Shotaro Sudo, and Yu ya Ohnishi. 2023. ADAPT-QSCIL:
Adaptive Construction of Input State for Quantum-Selected Configuration Interaction. arXiv:2311.01105 [quant-ph]
https://arxiv.org/abs/2311.01105 preprint.

[64] Kim A. Nicoli, Luca Johannes Wagner, and Lena Funcke. 2025. Machine-Learning-Enhanced Optimization of
Noise-Resilient Variational Quantum Eigensolvers. PoS LATTICE2024 (2025), 417. arXiv:2501.17689 [quant-ph]
https://pos.sissa.it/466/417/pdf preprint.

[65] Michael A Nielsen et al. 2005. The Fermionic canonical commutation relations and the Jordan-Wigner transform.
School of Physical Sciences The University of Queensland 59 (2005), 75.

[66] Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computation and Quantum Information (10th Anniversary
edition). Cambridge University Press, UK.

[67] Kyungjoo Noh, Liang Jiang, and Bill Fefferman. 2020. Efficient classical simulation of noisy random quantum circuits
in one dimension. Quantum 4 (Sept. 2020), 318. https://doi.org/10.22331/q-2020-09-11-318

[68] Matteo Paltenghi and Michael Pradel. 2022. Bugs in Quantum computing platforms: an empirical study. Reproduction
Package for "Bugs in Quantum Computing Platforms: An Empirical Study" 6, OOPSLA1 (April 2022), 86:1-86:27.
https://doi.org/10.1145/3527330

[69] Anouk Paradis, Jasper Dekoninck, Benjamin Bichsel, and Martin Vechev. 2024. Synthetiq: Fast and Versatile Quantum
Circuit Synthesis. Reproduction Package for the Article "Synthetiq: Fast and Versatile Quantum Circuit Synthesis" 8,
OOPSLA1 (April 2024), 96:55-96:82. https://doi.org/10.1145/3649813

[70] David Peral-Garcia, Juan Cruz-Benito, and Francisco José Garcia-Pefialvo. 2024. Systematic literature review: Quantum
machine learning and its applications. Computer Science Review 51 (Feb. 2024), 100619. https://doi.org/10.1016/j.
cosrev.2024.100619

[71] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alan Aspuru-Guzik,
and Jeremy L. O’'Brien. 2014. A variational eigenvalue solver on a quantum processor. Nature Communications 5, 1
(July 2014), 4213. http://arxiv.org/abs/1304.3061 preprint.

[72] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2 (Aug. 2018), 79. https://doi.org/10.
22331/q-2018-08-06-79

[73] Qiskit Development Team. 2023. Qiskit: An Open-source Framework for Quantum Computing. https://qiskit.org/.
Accessed: 2024-07-01.

[74] Google AI Quantum and Collaborators. 2021. Cirq: A Python framework for creating, editing, and invoking Noisy
Intermediate Scale Quantum (NISQ) circuits. https://github.com/quantumlib/Cirq.

[75] QunaSys. Accessed: July 4, 2024. Homepage. https://qunasys.com/en/.

[76] QunaSys. February 1, 2023. Quantum Algorithm Grand Challenge 2023 (QAGC2023). https://github.com/QunaSys/
quantum-algorithm-grand-challenge-2023.

[77] QunaSys. February 1, 2024. Quantum Algorithm Grand Challenge 2024 (QAGC2024). https://github.com/QunaSys/
quantum-algorithm-grand-challenge-2024.

[78] Somayeh Bakhtiari Ramezani, Alexander Sommers, Harish Kumar Manchukonda, Shahram Rahimi, and Amin

Anmirlatifi. 2020. Machine Learning Algorithms in Quantum Computing: A Survey. In 2020 International Joint

Conference on Neural Networks (IJCNN). IEEE, IEEE, Los Alamitos, CA, USA, 1-8. https://ieeexplore.ieee.org/

document/9207714 ISSN: 2161-4407.

Ariel Rosenfeld, Odaya Kardashov, and Orel Zang. 2018. Automation of Android applications functional testing

using machine learning activities classification. In Proceedings of the 5th International Conference on Mobile Software

Engineering and Systems (Gothenburg, Sweden) (MOBILESoft '18). ACM, New York, NY, USA, 122-132. https:

//doi.org/10.1145/3197231.3197241

(62

—

(79

—

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

http://arxiv.org/abs/2205.01899
http://arxiv.org/abs/2205.01899
https://doi.org/10.1145/3428198
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1007/s10994-023-06389-8
https://doi.org/10.1186/s41313-022-00047-7
https://arxiv.org/abs/2311.01105
https://arxiv.org/abs/2311.01105
https://arxiv.org/abs/2501.17689
https://pos.sissa.it/466/417/pdf
https://doi.org/10.22331/q-2020-09-11-318
https://doi.org/10.1145/3527330
https://doi.org/10.1145/3649813
https://doi.org/10.1016/j.cosrev.2024.100619
https://doi.org/10.1016/j.cosrev.2024.100619
http://arxiv.org/abs/1304.3061
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://qiskit.org/
https://github.com/quantumlib/Cirq
https://qunasys.com/en/
https://github.com/QunaSys/quantum-algorithm-grand-challenge-2023
https://github.com/QunaSys/quantum-algorithm-grand-challenge-2023
https://github.com/QunaSys/quantum-algorithm-grand-challenge-2024
https://github.com/QunaSys/quantum-algorithm-grand-challenge-2024
https://ieeexplore.ieee.org/document/9207714
https://ieeexplore.ieee.org/document/9207714
https://doi.org/10.1145/3197231.3197241
https://doi.org/10.1145/3197231.3197241

354:30 Avner Bensoussan, Elena Chachkarova, Karine Even-Mendoza, Sophie Fortz, and Connor Lenihan

(80]
(81]
(82]

(83]

(84]

(85]

(86]

(87

—

(88]

(89]

[90]

[91

—

[92]

[93

=

[94]

[100]

[101]

Proc.

Naoto Sato and Ryota Katsube. 2023. Locating Buggy Segments in Quantum Program Debugging. http://arxiv.org/
abs/2309.04266 preprint.

Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum
Computer. SIAM J. Comput. 26, 5 (Oct. 1997), 1484-1509. https://doi.org/10.1137/S0097539795293172

Ivan Supi¢ and Joseph Bowles. 2020. Self-testing of quantum systems: a review. Quantum 4 (Sept. 2020), 337.
https://doi.org/10.22331/q-2020-09-30-337 arXiv:1904.10042 [quant-ph].

Masuo Suzuki. 1976. Generalized Trotter’s formula and systematic approximants of exponential operators and inner
derivations with applications to many-body problems. Communications in Mathematical Physics 51, 2 (01 Jun 1976),
183-190. https://doi.org/10.1007/BF01609348

Attila Szabo and Neil S. Ostlund. 1996. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure
Theory. Dover Publications, Mineola, NY, USA.

Runzhou Tao, Yunong Shi, Jianan Yao, Xupeng Li, Ali Javadi-Abhari, Andrew W. Cross, Frederic T. Chong, and
Ronghui Gu. 2022. Giallar: push-button verification for the qgiskit Quantum compiler. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI
2022). Association for Computing Machinery, New York, NY, USA, 641-656. https://doi.org/10.1145/3519939.3523431
Yanxian Tao, Xiongzhi Zeng, Yi Fan, Jie Liu, Zhenyu Li, and Jinlong Yang. 2022. Exploring Accurate Potential Energy
Surfaces via Integrating Variational Quantum Eigensolver with Machine Learning. The Journal of Physical Chemistry
Letters 13, 28 (2022), 6420-6426. https://doi.org/10.1021/acs.jpclett.2c01738

Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li, Edward Grant, Leonard Wossnig,
Ivan Rungger, George H. Booth, and Jonathan Tennyson. 2022. The Variational Quantum Eigensolver: a review of
methods and best practices. Physics Reports 986 (2022), 1-128. https://doi.org/10.1016/j.physrep.2022.08.003 The
Variational Quantum Eigensolver: a review of methods and best practices.

H. F. Trotter. 1959. On the Product of Semi-Groups of Operators. Proc. Amer. Math. Soc. 10, 4 (1959), 545-551.
http://www.jstor.org/stable/2033649

Muhammad Junaid Umer and Muhammad Imran Sharif. 2022. A Comprehensive Survey on Quantum Machine
Learning and Possible Applications. Int. J. E-Health Med. Commun. 13, 5 (Dec. 2022), 1-17. https://doi.org/10.4018/
IJEHMC.315730

Hristo Venev, Timon Gehr, Dimitar Dimitrov, and Martin Vechev. 2024. Modular Synthesis of Efficient Quantum
Uncomputation. Proceedings of the ACM on Programming Languages 8, OOPSLA2 (Oct. 2024), 2097-2124. https:
//doi.org/10.1145/3689785

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. 2024. Software testing with
large language models: Survey, landscape, and vision. IEEE Transactions on Software Engineering 50, 4 (2024), 911-936.
https://doi.org/10.1109/TSE.2024.3368208

Simin Wang, Liguo Huang, Amiao Gao, Jidong Ge, Tengfei Zhang, Haitao Feng, Ishna Satyarth, Ming Li, He Zhang,
and Vincent Ng. 2023. Machine/Deep Learning for Software Engineering: A Systematic Literature Review. IEEE
Transactions on Software Engineering 49, 3 (2023), 1188-1231. https://doi.org/10.1109/TSE.2022.3173346

Yunfei Wang and Junyu Liu. 2024. A comprehensive review of quantum machine learning: from NISQ to fault
tolerance. Reports on Progress in Physics 87, 11 (oct 2024), 116402. https://doi.org/10.1088/1361-6633/ad7{69

Cody Watson, Nathan Cooper, David Nader Palacio, Kevin Moran, and Denys Poshyvanyk. 2022. A systematic
literature review on the use of deep learning in software engineering research. ACM Transactions on Software
Engineering and Methodology (TOSEM) 31, 2 (2022), 1-58.

Christopher A. Welty and Peter G. Selfridge. 1997. Artificial Intelligence and Software Engineering: Breaking the Toy
Mold. Automated Software Engineering 4, 3 (1997), 255-270. https://doi.org/10.1023/A:1008662625094

Xanadu. 2023. PennyLane: Quantum machine learning, automatic differentiation, and optimization of hybrid quantum-
classical computations. https://pennylane.ai/. Accessed: 2024-07-01.

xgboost developers. 2022. XGBoost Tutorials. https://xgboost.readthedocs.io/en/stable/tutorials/model. html.
Amanda Xu, Abtin Molavi, Lauren Pick, Swamit Tannu, and Aws Albarghouthi. 2023. Synthesizing Quantum-Circuit
Optimizers. Proc. ACM Program. Lang. 7, PLDI, Article 140 (June 2023), 25 pages. https://doi.org/10.1145/3591254
Mingkuan Xu, Zikun Li, Oded Padon, Sina Lin, Jessica Pointing, Auguste Hirth, Henry Ma, Jens Palsberg, Alex Aiken,
Umut A. Acar, and Zhihao Jia. 2022. Quartz: superoptimization of Quantum circuits. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI
2022). Association for Computing Machinery, New York, NY, USA, 625-640. https://doi.org/10.1145/3519939.3523433
Peng Yan, Hanru Jiang, and Nengkun Yu. 2022. On incorrectness logic for Quantum programs. Proc. ACM Program.
Lang. 6, OOPSLA1 (April 2022), 72:1-72:28. https://doi.org/10.1145/3527316

Yanming Yang, Xin Xia, David Lo, and John Grundy. 2022. A Survey on Deep Learning for Software Engineering.
ACM Comput. Surv. 54, 10s, Article 206 (Sept. 2022), 73 pages. https://doi.org/10.1145/3505243

ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

http://arxiv.org/abs/2309.04266
http://arxiv.org/abs/2309.04266
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.22331/q-2020-09-30-337
https://doi.org/10.1007/BF01609348
https://doi.org/10.1145/3519939.3523431
https://doi.org/10.1021/acs.jpclett.2c01738
https://doi.org/10.1016/j.physrep.2022.08.003
http://www.jstor.org/stable/2033649
https://doi.org/10.4018/IJEHMC.315730
https://doi.org/10.4018/IJEHMC.315730
https://doi.org/10.1145/3689785
https://doi.org/10.1145/3689785
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.1109/TSE.2022.3173346
https://doi.org/10.1088/1361-6633/ad7f69
https://doi.org/10.1023/A:1008662625094
https://pennylane.ai/
https://xgboost.readthedocs.io/en/stable/tutorials/model.html
https://doi.org/10.1145/3591254
https://doi.org/10.1145/3519939.3523433
https://doi.org/10.1145/3527316
https://doi.org/10.1145/3505243

AccelerQ: Accelerating Quantum Eigensolvers with Machine Learning on Quantum Simulators 354:31

[102] Qianjun Yao, Qun Ji, Xiaopeng Li, Yehui Zhang, Xinyu Chen, Ming-Gang Ju, Jie Liu, and Jinlan Wang. 2024. Machine
Learning Accelerates Precise Excited-State Potential Energy Surface Calculations on a Quantum Computer. The
Journal of Physical Chemistry Letters 15, 27 (2024), 7061-7068. https://doi.org/10.1021/acs.jpclett.4c01445

[103] Tong Yu and Hong Zhu. 2020. Hyper-Parameter Optimization: A Review of Algorithms and Applications.
arXiv:2003.05689 [cs.LG] https://arxiv.org/abs/2003.05689 preprint.

[104] Du Zhang and Jeffrey J. P. Tsai. 2003. Machine Learning and Software Engineering. Software Quality Journal 11, 2
(2003), 87-119. https://doi.org/10.1023/A:1023760326768

[105] Meng Zhang, Chao Wang, Shaojun Dong, Hao Zhang, Yongjian Han, and Lixin He. 2022. Entanglement entropy
scaling of noisy random quantum circuits in two dimensions. Phys. Rev. A 106 (Nov 2022), 052430. Issue 5. https:
//doi.org/10.1103/PhysRevA.106.052430

[106] Yiging Zhou, E. Miles Stoudenmire, and Xavier Waintal. 2020. What Limits the Simulation of Quantum Computers?
Phys. Rev. X 10 (Nov 2020), 041038. Issue 4. https://doi.org/10.1103/PhysRevX.10.041038

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 354. Publication date: October 2025.

https://doi.org/10.1021/acs.jpclett.4c01445
https://arxiv.org/abs/2003.05689
https://arxiv.org/abs/2003.05689
https://doi.org/10.1023/A:1023760326768
https://doi.org/10.1103/PhysRevA.106.052430
https://doi.org/10.1103/PhysRevA.106.052430
https://doi.org/10.1103/PhysRevX.10.041038

	Abstract
	1 Introduction
	2 Quantum Eigensolvers as Optimisable Software Components
	3 Background
	3.1 Quantum Implementations and Quantum Eigensolver
	3.2 ADAPT-QSCI Algorithm
	3.3 QCELS Algorithm
	3.4 Software Engineering Optimisation Methods

	4 AccelerQ
	4.1 Fitness Function
	4.2 Hyperparameter Validation Test Set
	4.3 Data Augmentation
	4.4 The QE Predictor Training
	4.5 Optimisation

	5 Implementation Details
	6 Evaluation
	6.1 Methodology
	6.2 Experimental Setup

	7 Results
	7.1 RQ1: Model Deployment
	7.2 RQ2–RQ5: Execution with Different Hyperparameters

	8 Discussion
	9 Threats to Validity
	10 Related Work
	11 Conclusion
	12 Data Availability Statement
	References

