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Preface

A Message from the General and Program Chairs

Welcome to the proceedings of the 16th Symposium on Search-Based Software Engi-
neering, SSBSE 2024, held in Porto de Galinhas, Brazil. The symposiumwas co-located
with the ACM International Conference on the Foundations of Software Engineering,
which is one of the main conferences in the field of software engineering. SSBSE 2024
featured four tracks: Research, Challenge, Hot Off the Press, and the Replication &
Negative Results and New Ideas & Emerging Results (RENE/NIER) track.

Each of the tracks had a TheHotOff the Press (HOP) track offered authors of recently
published papers the opportunity to present their work to the SSBSE community by
giving a talk at the conference. The Replications and Negative Results Track provided
a venue for researchers to submit replications of all types of empirical studies related to
Search-BasedSoftwareEngineering, andoriginalworks reporting negative results on any
of the topics of interest for the research track of the SSBSE conference. The Challenge
Track was an exciting opportunity for SBSE researchers to apply tools, techniques, and
algorithms to real-world software. Participants used their expertise to carry out analyses
on open-source software projects or to directly improve the infrastructure powering
research experiments. The principal criterion for the challenge track was to produce
interesting results and to apply expertise to challenge the state of the art and inspire
future SBSE research. The challenges for this year were on quantum computing and
generative AI & SSBSE.

The research track received 7 submissions. To ensure an unbiased evaluation process,
we adopted double-anonymous reviewing for this track. Each paper was assigned three
reviewers andwent through a thorough reviewprocess. As a result, 3 submissions out of 7
(43%) were accepted for the research track. The challenge track received 7 submissions
and 4 of them (57%) were accepted. The HOP track accepted 2 submissions out of
3 (66%) and the RENE/NIER track accepted 1 out of 2 (50%). Overall, SSBSE 2024
accepted 10 papers out of 19 (53%). The decisions on the paperswere exclusively derived
from the Program Committees’ deliberations on the content and quality of each paper,
with no regard for quotas.

Many people participated in the organisation of SSBSE 2024 and the preparation of
the proceedings. The HOP track was co-chaired by Vesna Nowack (Imperial College
London, UK) and Vincenzo Riccio (University of Udine, Italy). The RENE/NIER track
was co-chaired by Gabin An (Korea Advanced Institute of Science and Technology,
SouthKorea) andMatheusPaixao (StateUniversity ofCeará,Brazil). The challenge track
was handled by co-chairs Karine Even-Mendoza (King’s College London, UK), Hector
Menendez (King’s College London, UK), and Harel Berger (Georgetown University,
USA). As part of the challenge track, together with University College London Crest
Centre, they organised a collaborative jam session that was open to the public and ran
fromMarch 18th to 19th. We would like to thank the co-chairs and Program Committee



vi Preface

of all tracks, as well as the authors of all submissions, for their invaluable contribution
to SSBSE 2024.

Last, but not least, we want to thank all the members of the SSBSE community for
attending and participating in SSBSE 2024! We hope you had a great time at Porto de
Galinhas and enjoyed the program. If you couldn’t attend, our proceedings are here for
you.

July 2024 Marcio Barros
Gunel Jahangirova

Foutse Khomh
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Evolutionary Analysis of Alloy
Specifications with an Adaptive Fitness

Function

Jianghao Wang1(B) , Clay Stevens2 , Brooke Kidmose3 ,
Myra B. Cohen2 , and Hamid Bagheri1

1 University of Nebraska-Lincoln, Lincoln, NE 68588, USA
{jwang65,bagheri}@unl.edu

2 Iowa State University, Ames, IA 50011, USA
{cdsteven,mcohen}@iastate.edu

3 Technical University of Denmark, Kongens Lyngby, Denmark
blam@dtu.dk

Abstract. The use of formal methods in software engineering imparts
a high degree of rigor and precision on the software development pro-
cess. While formal methods are crucial for ensuring system dependability,
their practical adoption has been limited in part due to scalability con-
cerns, even though many automated analysis tools are available. In this
paper, we address the scalability challenge in one type of formal analysis
approach, model-finding. Prior work on EvoAlloy has demonstrated the
potential for extending the Alloy Analyzer with an evolutionary algo-
rithm by loosening the completeness guarantee while preserving sound-
ness. However, that approach was evaluated on a small set of programs
and failed to find many small-scope models that Alloy can find. In this
work we introduce a new technique, called AdaptiveAlloy, which uses a
novel adaptive fitness function for the analysis of Alloy relational logic
specifications. Through our experiments, we illustrate that AdaptiveAl-
loy is capable of finding models of higher scope, and achieving greater
scalability than both EvoAlloy and a state-of-the-art Alloy analyzer.

Keywords: Genetic Algorithm · Formal Analysis · Adaptive Fitness

1 Introduction

Software engineers rely on a wide variety of tools to help them develop secure,
efficient, and dependable software. In many software engineering domains—
particularly for systems where reliable execution is paramount—developers
employ formal analysis to verify their systems behave as expected. Researchers
have developed and refined a variety of formal approaches to analyze software,
applying their tools to validate software in domains such as autonomous vehi-
cles [17], the Internet-of-Things [2], and database design [19,27]. Unfortunately,
despite great advances in these approaches, formal analysis techniques still face
challenges regarding scalability when applied to large-scale software systems.
Modern analysis tools—e.g., Alloy [12]—attempt to address these challenges by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Jahangirova and F. Khomh (Eds.): SSBSE 2024, LNCS 14767, pp. 1–17, 2024.
https://doi.org/10.1007/978-3-031-64573-0_1
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defining bounds on the scope of the analysis; these bounded analysis approaches
improve scalability for small applications, but larger scopes remain intractable
even for state-of-the-art techniques.

These scalability challenges stem in part from a reliance on Boolean sat-
isfiability (SAT) solvers, which many state-of-the-art formal techniques share.
These approaches translate a formal specification into a satisfiability problem—
typically represented in conjunctive normal form (CNF)—and provide that prob-
lem to an off-the-shelf SAT solver to solve. This translation from specification
to SAT is a resource intensive process, requiring a great deal of system memory
for large specifications. Once translated, the SAT solver systematically explores
a vast search space which grows exponentially in the number of variables in the
original specification—a total exploration of which may well be intractable.

In cases where the space of possible solutions is simply too large for system-
atic exploration, search-based techniques show promise as a sound alternative.
In particular, EvoAlloy [23] proposed the use of a genetic algorithm to address
the task of finding satisfying models within the Alloy context, yielding promising
results. It represents potential assignments of relational variables in the Alloy
specification as the genotype and utilizes methods such as mutation, crossover,
and selection to navigate the solution space and ultimately reach an assignment
that satisfies all the constraints. While EvoAlloy [23] represents a notable step
forward, it primarily focuses on employing the GA to explore the solution space
and converge on satisfactory assignments. However, its approach to fitness eval-
uation, which relies on “maxsat” and considers only the “top-level” subformulas
of the specification, might not fully grasp the intricacies of Alloy’s relational
specifications. This approach could lead to early convergence on locally optimal
solutions, potentially missing satisfying models of the specification.

In this paper, we present a novel approach that significantly enhances the
capabilities of genetic algorithm-based analysis in the context of Alloy speci-
fications. The key contribution lies in the refinement and depth of the fitness
function employed. Unlike EvoAlloy’s [23] approach, which operates on “top-
level” subformulas, our proposed fitness function delves into the abstract syntax
tree (AST) of the relational formula, offering a granular examination of the spec-
ification’s structure. By traversing the AST and computing the number of genes
that would require modification to satisfy the specification, our approach pro-
vides a more comprehensive and nuanced evaluation of candidate solutions. This
nuanced evaluation enables our method, implemented in our custom tool Adap-
tiveAlloy, to effectively navigate the solution space and converge more quickly
on satisfying solutions. Furthermore, we utilize adaptive fitness (e.g. [3]) in this
domain, which dynamically adjusts the weighting of subformulas based on their
complexity and difficulty in satisfying the specification. This adaptive approach
allows AdaptiveAlloy to allocate resources more efficiently, focusing compu-
tational effort where it is most needed and enhancing the overall effectiveness of
the GA-based analysis of Alloy specifications.

Our comparative analysis of AdaptiveAlloy with the Alloy Analyzer and
EvoAlloy demonstrates scalability and efficiency improvements across various
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experimental subjects. Our approach shows enhancements in analysis time of up
to 182 times faster compared to the Alloy Analyzer and up to 172 times faster
compared to EvoAlloy. Empowered by adaptive fitness functions and granular
AST assessment, our approach demonstrates promising capabilities in addressing
the scalability and performance challenges faced by current state-of-the-art tools.

2 Background and Running Example

In this section, we present a small, yet representative Alloy specification to illus-
trate our evolutionary search technique and thus motivate our research. An in-
depth discussion of our adaptive approach is outlined in Sect. 3.

Alloy specifications con-
sist of a set of relations,
defined in a syntax akin
to object-oriented program-
ming languages, and a set of constraints, expressed as first-order logic sentences.
These constraints may include transitive closure over the defined relations. Addi-
tionally, specifications may contain one or more commands, which aim to find
models satisfying the constraints or counterexamples, all within a specified scope
defined on one or more of the relations.

Listing ?? depicts an Alloy
specification of a Binary Expression Tree (BET). This specification outlines the
BET’s primary data types using four distinct signatures (lines 1–6) and enforces
several key constraints (lines 8–19). Specifically, it ensures that each node pos-
sesses at most one parent, every expression possesses exactly two children, and no
expression self-includes. Moreover, the Root expression is designated as exclusive
and holds access to all other nodes.

The Alloy Analyzer translates specifications into a finite relational model
using Kodkod [22]. This process involves defining bounds for each relation, which
encompass possible tuples. Kodkod then converts these relations, bounds, and
constraints into a Boolean formula, which is solved by SAT solvers to iden-
tify valid instances. However, Alloy’s scalability is limited by its reliance on
SAT solvers, which employ an exhaustive enumeration approach, hindering its
application to real-world systems. In contrast, our approach, AdaptiveAlloy,
replaces SAT solvers with a genetic algorithm, offering improved scalability and
performance. The next section discusses how our approach successfully achieves
a more economical and scalable model-finding technique by using a novel adap-
tive genetic algorithm in detail.

3 AdaptiveAlloy

Figure 1 presents an overview of AdaptiveAlloy and elucidates its ability
to circumvent the computationally intensive aspects of the current Alloy Ana-
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lyzer. On the top, the Alloy Analyzer first reads an Alloy specification and
converts it into a relational model. This model is then forwarded to Kodkod.
Using the scopes and signature bounds provided by Alloy, Kodkod concretizes
these parameters to define the specification boundaries. To represent this finite
relational model as a Boolean logic formula, Kodkod maps each relation to a
Boolean matrix. Within this matrix, every tuple within the bounds of the given
relation corresponds to a unique Boolean variable. The relational constraints
are then transformed into Boolean constraints over these translated variables.
Subsequently, Kodkod translates the resulting Boolean formula into Conjunc-
tive Normal Form (CNF), which is then passed to an off-the-shelf SAT solver
to derive a solution. Finally, the Alloy interpreter interprets the SAT solver’s
output, translating it into a solution instance.

Both EvoAlloy and AdaptiveAlloy modify the process of finding satisfying
models of a given specification by circumventing the traditional SAT solver-based
approach, as depicted in Fig. 1. AdaptiveAlloy entails the following steps:
(1) It begins by converting the Alloy specification into a bounded relational
model, akin to the process employed by Kodkod in traditional analysis methods.
(2) Next, it constructs a genotype representation of candidate solutions. This
representation encapsulates the assignments of tuples to the relations within
the model. (3) The crux of our approach lies in executing a genetic algorithm-
based search of the solution space. This search employs crossover, mutation, and
selection techniques, backed by our adaptive Alloy-specific fitness function, to
iteratively explore and refine potential solutions.

The following subsections detail our approach, focusing on key components:
Genotypic Representation (Sect. 3.1) elucidates the methodology behind encod-
ing Alloy specifications, required for enabling our genetic algorithm to effectively
navigate the solution space. Genetic Algorithm Processes (Sect. 3.2) delve into
the processes of crossover, mutation, and selection employed by our genetic algo-
rithm, instrumental in iteratively refining and improving candidate solutions.

Fig. 1. AdaptiveAlloy overview
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Following this, our fitness function, which incorporates two core innovations, is
presented: Degree of Violation Computation (Sect. 3.3) introduces a method for
computing the “degree” to which a given assignment violates the Alloy specifi-
cation. This granular analysis provides valuable insights into the quality of can-
didate solutions. Lastly, Dynamic Weight Adjustments (Sect. 3.41) explains how
our dynamic weight adjustments enhance our approach’s efficacy in navigating
complex solution spaces by allocating more weight to challenging subformulas.

3.1 Genotypic Representation

Fig. 2. Example (bit-string) chromo-
some representation of tuple assign-
ments to relation Var.

The bounded relational models used
by Kodkod are typically converted into
Boolean variables in the underlying SAT
problem by creating a unique variable
to represent each possible tuple assign-
ment to each relation based on the bounds
defined for that relation. If a given vari-
able is true in a given candidate solution,
the corresponding tuple is assigned to the
corresponding relation in that candidate;
if the variable is false, that tuple is not assigned to the relation. In AdaptiveAl-
loy, we use a similar mapping to represent the genotype for each individual as
a set of chromosomes corresponding to the set of relations, where each gene in
each chromosome is a single bit value (1 or 0) representing the assignment/non-
assignment of a specific tuple to that relation, respectively. Thus, each individual
can be defined genetically as a bitstring of genes indicating the assignment/non-
assignment of each relation-tuple pair that falls within the bounds of the specifi-
cation. Figure 2 depicts examples of bit chromosomes created for the Var relation
in the example from Sect. 2.

3.2 Genetic Algorithm

For AdaptiveAlloy’s initial generation, we employ a combination of random
gene assignment for the majority of individuals and a domain-specific strategy.
This strategy generates two special chromosomes: one composed of all 1 s in a
bit-string format, representing an instance incorporating all tuples for each rela-
tion, and another composed of all 0 s, representing an empty tuple set instance,
thus providing a diversity of alleles in the population. Figure 3 provides an illus-
tration of various aspects of AdaptiveAlloy, including its (a) chromosome
representation, (b) two arbitrarily selected chromosomes corresponding to List-
ing ??, (c) transformation from tuple-sets form into bit-string chromosome, (d)
crossover step for generating a new bit string, and (e) mutation process over the
bit-string.
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Fig. 3. AdaptiveAlloy’s (a) chro-
mosome representation, (b) two arbi-
trarily picked chromosomes for List-
ing ??, (c) transformation from tuple-
sets form into bit-string chromo-
some,(d)crossover step for creating a
new bit string, and (d) mutation over
bit-string.

Selection: AdaptiveAlloy’s selector
employs a combination of elitism and
tournament selection strategies to deter-
mine the population for the subsequent
generation. Initially, the selector retains
the e most-fit chromosomes from the cur-
rent population, adding them unchanged
to the next generation (elitism). Subse-
quently, it randomly selects t individuals
from the remaining population and itera-
tively picks the most-fit individual among
those t, repeating this process until all
individuals are chosen (tournament selec-
tion). The next generation consists of a
set of survivors, comprising the elites (e)
and a portion of the winners from the
tournament selection, along with a set of
offspring generated through crossover and
mutation. The number of survivors and
offspring is determined based on the ratio
rates, with the total population size (p)
being composed of these individuals for
the subsequent generation.

Crossover: After the mating pool is
established, AdaptiveAlloy employs
the crossover operation to produce off-
spring for the subsequent generation. The
crossover process starts by randomly choosing two parent genotypes from the
mating pool. Subsequently, a random bit index ranging from 0 to the length of
the shorter of the two bit-string genotypes is selected as the cut point for one-
point crossover. Using this cut point, the crossover operator generates two new
individuals by exchanging the bits to the right of the cut point between each of
the parents.

Mutation: To maintain genetic diversity and prevent premature convergence to
local optima, AdaptiveAlloy employs mutation as a crucial genetic operator.
The mutation process in AdaptiveAlloy involves a strategic combination of
configurable mutation rates and a probability-based selection of mutation opera-
tors. The mutation process operates at two levels: chromosomes and genes within
those chromosomes. The mutation rate for chromosomes, denoted as pindividual,
determines the likelihood that a chromosome will be selected for mutation, while
the gene mutation rate, denoted as pgene, determines the likelihood that a gene
within the selected chromosome will be altered. More specifically, it can be rep-
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resented mathematically as follows:

P (mutation) = pindividual × pgene

where P (mutation) represents the probability of mutation occurring.
Moreover, the mutation operator is determined based on a probability dis-

tribution. The choice of mutation operator is made from a set of options each
with its associated probability. These operators include:

– Chromosome Creation: If the selected chromosome has only 0 s assigned
to each individual, the creation operator generates a new equal-length bit
chromosome by randomly assigning 0 or 1 for each gene in the chromosome.

– Chromosome Removal: Each gene in the selected chromosome is replaced
with a 0, effectively altering the chromosome’s composition.

– Chromosome Transformation: The original value of the selected chromo-
some is replaced with a newly generated bit chromosome.

– Bit Transformation: This operator focuses on altering individual genes
within the selected chromosome. It randomly selects a gene and flips its value,
thereby introducing localized changes.

3.3 Granular Fitness Analysis: Assessing Degree of Violation

Unlike EvoAlloy [23], which relies on high-level assessments of solution quality,
our fitness function delves into the details of the relational formula structure,
offering a nuanced assessment of candidate chromosomes. Specifically, our fitness
function goes beyond simply counting violated constraints, aiming to capture the
diversity and complexity of constraint violations.

To facilitate our fitness function’s analysis, we categorize relational formu-
las into two main classes: (1) Elementary Formulas: These include multiplicity,
comparison, and int comparison formulas. They represent basic building blocks
of the relational formula and can be evaluated directly. (2) Composite Formulas:
These connect multiple elementary formulas with logical operators and often
depend on the truth values of more than one subformula. Examples include
n-ary, binary, and quantified formulas.

Fig. 4. The Abstract Syntax Tree of the Constraint
Formulas

We conceptualize the rela-
tional formula as a large
abstract syntax tree (AST),
with the global root symbol-
izing the conjunction of all
subformulas. Figure 4 demon-
strates the AST of the rela-
tional constraints of the run-
ning example. Each leaf node
corresponds to an elementary
formula, while composite formulas serve as intermediate nodes, connecting
smaller subtrees and leaf nodes. Our fitness function conducts a detailed exam-
ination of the AST of the relational formula to identify unsatisfied subformulas
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when a chromosome fails to meet the system constraints. This process provides a
better understanding of the violated constraints, including the specific subformu-
las involved and the extent of their violation. For instance, consider a constraint
ensuring each node in a graph has exactly two outgoing edges. If a chromosome
violates this constraint, we pinpoint the specific subformulas responsible, such as
the multiplicity formula expressing the number of outgoing edges for each node.

Chromosomes with different genetic makeup produce varying degrees of vio-
lation for the same constraints. Essentially, when a common constraint is eval-
uated as unsatisfied by distinct chromosomes, the dissimilarity in their genetic
makeup often results in the violated tuples varying in both quantity and com-
position. By analyzing the specific tuples involved in constraint violations, we
quantify the degree of violation for each chromosome. An example of this is
illustrated in Fig. 5, where chromosomes C1 and C2 both violate the same con-
straint, requiring different degrees of modification to satisfy it. This constraint
stipulates that for all types of Expr, each one should connect to exactly two
child Nodes. Upon evaluating their relational values assigned to Root, Expr, and
connects, C1 requires only one additional tuple for connects to satisfy this con-
straint. In contrast, C2 has one extra connected node for R1 and is missing two
for E1, resulting in a total of three tuples needing revision to meet the constraint.

Based on the detailed analysis of constraint violations and the tuple-wise
changes needed for satisfaction, our fitness function computes a fitness score
for each chromosome. This score represents the accumulated number of tuple-
wise changes required to satisfy all constraints, offering a precise measure of
each chromosome’s proximity to a valid solution, as represented by the following
formula: ∑

ci∈Consts

Ft(ci, ch)

where Ft(ci, ch) indicates the number of violating tuples when evaluating
chromosome ch against the ith constraint. This approach precisely quantifies
the distance of a specific formula from being satisfied by a chromosome in terms
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of the number of tuples needed to be altered, in contrast to abstractly counting
how many relations are involved in the violation, as considered by prior work.
It also supports our design choice of representing the problem using a bit-string
chromosome at the tuple level.

Fig. 5. Two chromosomes with distinct genetic makeup exhibit varying degrees of
violation for the same constraint

3.4 Dynamic Weight in Fitness Computation

In addition to tracking the number of tuple revisions required to satisfy each
subformula, our approach incorporates a dynamic weight in fitness value compu-
tation to tackle the challenge posed by exceptionally difficult constraints. These
constraints can often lead to the search converging to local optima, hindering the
effectiveness of the genetic algorithm. The adaptive fitness function is defined as
follows:

wi = wi + Δw, Δw = Fc(ci, ch∗)

f (ch) =
∑

ci∈Consts

wi × Ft(ci, ch)

Here, wi represents the dynamic weight of the ith constraint, which accumu-
lates the number of failed tuples for chromosome ch when the ith constraint is
unsatisfied. Initially, all weights are set to 1 and are subsequently updated every
certain number of generations by adding given values Δw. ch∗ denotes the best
chromosome in the population found during the period between two consecutive
updates of the weights, denoted as P .

The value of Δw is 1 if the best chromosome ch∗ does not satisfy constraint
ci, and 0 when it is satisfied. This implies that the weights of unsatisfied con-
straints are increased by 1 periodically. As the population evolves, constraints
that persistently remain unsatisfied over extended periods are penalized with
higher weights.

When the genetic algorithm encounters a plateau caused by resistant con-
straints, the adaptive fitness function assigns much lower fitness values to chro-
mosomes that satisfy these constraints. This favors the genes of chromosomes



10 J. Wang et al.

that do not satisfy these constraints to propagate to the next generation, helping
to navigate the search out of local optima more efficiently.

This fitness function ensures truth-invariance by requiring the satisfaction
of the Alloy specification, which necessitates satisfaction of all its relations and
formulas. Our ablation study demonstrates that adaptive fitness outperforms
plain fitness significantly, as discussed in detail in Sect. 4.

4 Experimental Evaluation

This section presents the experimental evaluation of AdaptiveAlloy. We
have implemented AdaptiveAlloy’s genetic algorithms engine on top of the
Alloy Analyzer, its underlying finite relational model finder, Kodkod [21], and
the Jenetics framework [26]. AdaptiveAlloy consists of two main compo-
nents: the Adaptive Evaluator and the GA Generator. The Adaptive Evaluator
assesses chromosome satisfiability, measures error degrees, and computes adap-
tive weights for the fitness function. The GA Generator produces initial pop-
ulations, implements mutation operators for effective solution exploration, and
facilitates chromosome conversion between Kodkod and bit-string representa-
tions. Additionally, it includes a component for transforming chromosome-level
model instances into high-level Alloy models at the final stage of the evolution-
ary search. We used the AdaptiveAlloy apparatus for carrying out the exper-
iments. The AdaptiveAlloy prototype and data is available on the project
website [24]. Our evaluation addresses the following research questions:

– RQ1. How does AdaptiveAlloy compare to Alloy and EvoAlloy in terms of
both effectiveness and efficiency?

– RQ2. What is the impact of Adaptive AST-Based Fitness compared to Non-
Adaptive Fitness in terms of performance improvement?

Experimental Subjects. Our experimental subjects consist of publicly avail-
able Alloy specifications with varying sizes and complexities. More specifically,
we use a list of twelve Alloy specifications modeling prominent algorithms (i.e.,
Chord models chord protocol for a peer-to-peer distributed hash table) or ubiq-
uitous systems (i.e., Railway models a simplified railway system that declares
safety policies for trains) that are distributed with the Alloy Analyzer [1]. When
performing the comparison experiments on this collection of specifications, we
gradually increased the scope of analysis for each specification. Figure 6 displays
the counts of variables and clauses in propositional formulas for each subject
system. The data reflects a notable escalation in both variables and clauses as
the analysis scope progresses from 5 to 25, highlighting the considerable rise in
complexity and computational demands for broader analyses.
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Fig. 6. Size Comparison of Variables and Clauses
in Propositional Formulas for Subject Systems
Across Two Analysis Scopes of 5 and 25.

Experimental Setup We con-
ducted all experiments on a
PC equipped with a 64-core
4.3 GHz AMD Ryzen Thread-
ripper 3990X processor boast-
ing 128 threads and 64 GB
of RAM. To maintain consis-
tency, each experiment was allo-
cated 8 cores (16 threads) and
16 GB RAM. Consequently, a
maximum of three jobs could
run concurrently on the system.
Following parameter-tuning, we
heuristically settled on the fol-
lowing parameters for all exper-
iments: a population size of 32,
with primary GA configurations initialized as follows: 60% offspring fraction, an
overall gene mutation rate of 80%, and a one-point crossover with a 60% prob-
ability. Additionally, the likelihoods for each mutation operator were configured
as follows: for a selected gene represented by a string of 0 s, a 50% chance for bit-
string creation and 50% for single-bit creation; for a non-empty selected gene, a
20% chance of deletion, 30% for bit-string transformation, and 50% for single-bit
transformation. Regarding the hyper-parameters of our adaptive algorithm, the
incremental adaptive weight was initially set to 1, and the adaptive step was set
to 100 iterations.

4.1 Results for RQ1: Comparison Against State-of-the-Art

We conducted a comparative analysis of AdaptiveAlloy with two state-of-the-
art tools: Alloy Analyzer (version 5.1) [1] and EvoAlloy [23]. This comparison
aimed to assess how well AdaptiveAlloy scales and performs in terms of
both effectiveness and efficiency across a range of experimental subjects. We
evaluated the effectiveness of AdaptiveAlloy by comparing its scalability with
Alloy Analyzer and EvoAlloy over increasing analysis scopes. Each technique was
subjected to three stopping criteria: reaching a satisfying solution, exceeding
the maximum memory allocation, or surpassing a 24-h time limit. To reduce
variance, we performed each analysis five times and recorded the analysis time.

Box plots in Fig. 7 illustrate the analysis time (in logarithmic scale) in mil-
liseconds (ms) obtained from Alloy Analyzer, EvoAlloy, AdaptiveAlloy, and
AdaptiveAlloy without dynamic weight across increasing analysis scopes for var-
ious study objects. The notations “M” and “T” in the diagram denote that
the corresponding technique cannot identify a valid solution given the available
memory and time resources, respectively; “M” signifies the technique exceeded
the maximum memory allocation and “T” indicates the technique surpassed the
24-h time limit. From the experimental results, several observations emerged.
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Fig. 7. Box plots depict the analysis time (in logarithmic scale) in milliseconds (ms)
taken from Alloy Analyzer, EvoAlloy, AdaptiveAlloy, and AdaptiveAlloy without
dynamic weight over the increasing analysis scope across objects of study. M denotes
exceeding the maximum memory allocation, and T indicates surpassing a 24-h time
limit.
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First, for more than half of the specifications, both EvoAlloy and AdaptiveAl-
loy could scale to larger analysis scopes compared to Alloy Analyzer, which fre-
quently encountered memory limitations. This trend was particularly evident in
specifications such as abstractMemory, birthday, and railway. Second, for smaller
scopes where all three techniques performed well, EvoAlloy generally exhibited
running times comparable to, or worse than, Alloy Analyzer. However, Adap-
tiveAlloy outperformed both the Alloy Analyzer and EvoAlloy in terms of the
analysis time required to find solutions. Finally, while EvoAlloy’s genetic algo-
rithm (GA) struggled to efficiently solve certain problems, often hitting the time
limit even for small scopes, AdaptiveAlloy’s advanced adaptive GA approach
proved effective. For instance, in the case of Dijkstra, AdaptiveAlloy achieved
superior performance compared to both Alloy Analyzer and EvoAlloy.

AdaptiveAlloy achieves analysis time improvements of up to 181.62
times faster (with an average enhancement of 20.56 times) compared
to the Alloy Analyzer and up to 172.10 times faster (with an average
improvement of 33.04 times) compared to EvoAlloy across various spec-
ifications.

4.2 Results for RQ2: Ablation Study on Dynamic Weight

To investigate the impact of Adaptive AST-Based Fitness compared to Non-
Adaptive Fitness, we conducted an ablation study on dynamic weight. Our GA-
boosted approach was developed in two phases: initially incorporating advanced
AST-based granular assessment of constraint violation degrees for fitness eval-
uation, and subsequently adding dynamic weights as indicators of the difficulty
level in satisfying specific subformulas alongside fitness based on constraint vio-
lation degrees. Figure 7 outlines the runtime performance of both versions as
the analysis scope increases across the objects of study. The complete form of
AdaptiveAlloy(involving both advanced AST-based granular assessment of
constraint violation degree and dynamic weights in fitness analysis) outperforms
the version without introducing dynamic weight for almost every specification
under analysis, with handshake as the only exception, on which both versions
exhibit similar performance. It is noteworthy that, for most specifications, the
efficiency gained from using adaptive fitness becomes increasingly significant as
the analysis scope increases. Notably, for certain specifications like chord and file
system, the non-adaptive version ran out of memory at smaller scopes compared
to the one using adaptive fitness.

The Ablation Study compared Adaptive AST-Based Fitness with and
without dynamic weights. Results show dynamic weights significantly
outperformed static weights, with improvements ranging up to 5.78 times
(with an average improvement of 3.62 times).
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5 Discussion

The experimental results generally indicate that AdaptiveAlloy’s GA notably
improves the scalability of the state-of-the-art without experiencing the run-
time efficiency degradation observed in EvoAlloy. However, a few drawbacks
of AdaptiveAlloy are worth discussing. During the preliminary hyperparam-
eter tuning experiments, we discovered that no universally optimal configura-
tion achieves the best performance across all experimental objects, leaving us a
tradeoff option that keeps significantly better running time on the majority of
the specs, while maintaining acceptable performance for the rest. This results
in AdaptiveAlloy having a larger variance in running time over handshake
and railway, and performs equally or slightly less efficiently when compared
to EvoAlloy. A dynamic parameter tuning technique can potentially further
enhance AdaptiveAlloy’s performance.

AdaptiveAlloy enhances the precision of its search guidance by evaluating
constraint violation through AST traversal. While this strategy notably boosts
fitness function accuracy and overall performance, it comes with increased mem-
ory consumption, potentially limiting scalability. Jenetics’ memory management
shortcomings exacerbate this issue by retaining allocated memory post-iteration.
Our ablation study revealed that the non-adaptive AdaptiveAlloy variant
faced memory constraints due to prolonged search iterations and residual mem-
ory accumulation. Implementing a memory-efficient GA engine and imposing a
threshold on AST tracking depth could mitigate this challenge.

6 Related Work

Numerous extensions to Alloy and its automated Analyzer have been developed
to enhance its performance and address scalability challenges [2,4,6,7,9,13–15].
Notable among these are Titanium [5], which optimizes analysis time by gener-
ating a complete solution set for original specifications to inform revised ones,
and Platinum [28], which partitions constraints into independent subclauses for
more efficient analyses. Similarly, iAlloy [25] and SoRBoT [18] leverage solution
reuse techniques to enhance efficiency. Aluminum [15] extends the Alloy Ana-
lyzer to generate minimal model instances by iteratively removing tuples from
found model instances until a minimal instance is reached. Unlike our approach,
Aluminum does not incorporate search-based solutions.

EvoAlloy [23] stands out for its focus on scalability, employing evolutionary
algorithms to address Alloy Analyzer’s limitations. However, its oversimplified
problem representation and fitness design hinder its effectiveness. In contrast,
our approach, AdaptiveAlloy, introduces a sophisticated GA with a novel
fitness function and adaptive weight optimization to overcome these limitations.

PLEDGE [16] employs a hybrid metaheuristic search and SMT approach for
improving constraint solving, particularly in system testing. While promising,
PLEDGE’s relies on UML models and OCL constraints. Additionally, PLEDGE
lacks significant scalability improvements over Alloy due to its approach of del-
egating subformulas to an SMT solver, which can be a scalability bottleneck.
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In contrast, AdaptiveAlloy focuses on improving scalability and efficiency
through a Genetic algorithm approach, bypassing intensive solvers.

There is extensive research on using evolutionary algorithms in software engi-
neering [11]. Allmula and Gay [3] propose the use of adaptive fitness functions,
however, their focus is on traditional program code coverage. Godefroid and
Khurshid apply a genetic algorithm to analyze concurrent reactive systems for
errors [10]. ACO-Solver utilizes Ant Colony Optimization for solving intricate
string constraints [20]. Concolic Walk combines linear constraint solving with
tabu search for complex arithmetic path conditions [8]. In contrast, our work
focuses on bounded analysis of large-scale solution spaces specified in relational
logic, requiring original chromosome encodings and fitness functions suitable for
Alloy’s relational logic.

7 Conclusion

In this paper, we introduce a novel approach that enhances genetic algorithm-
based analysis, particularly within Alloy specifications. Our key contribution lies
in the depth of the fitness function, which offers a granular examination of the
specification’s structure by traversing the abstract syntax tree. This nuanced
evaluation, implemented in our tool, AdaptiveAlloy, enables effective navi-
gation of the solution space, leading to globally optimal solutions. Additionally,
we introduced an adaptive fitness, dynamically adjusting subformula weighting
based on complexity. This optimizes resource allocation, enhancing GA-based
analysis efficiency. Our comparative analysis with state-of-the-art Alloy Ana-
lyzer and EvoAlloy underscores significant scalability and efficiency improve-
ments, with AdaptiveAlloy achieving analysis times up to 181.62 times faster
than Alloy Analyzer and up to 172.10 times faster than EvoAlloy.

For future work, we plan to optimize the memory overhead introduced by the
AST traversal tracking procedure as aforementioned. A potential tradeoff can
be restricting the maximum depth of the AST for constraints being exploited.
Our preliminary parameter tuning results reveal that no single global optimal
configuration achieves the best performance for all experimental objects, thus we
would also seek to explore incorporating a learning-based technique to dynam-
ically tune the hyperparameters to enhance the performance when analyzing a
diversity of specifications.
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Abstract. Many-objective evolutionary algorithms (MOEAs) have
been applied in the software testing literature to automate the gener-
ation of test cases. While previous studies confirmed the superiority of
MOEAs over other algorithms, one of the open challenges is maintaining
a strong selective pressure considering the large number of objectives
to optimize (coverage targets). This paper investigates four density esti-
mators as a substitute for the traditional crowding distance. In particu-
lar, we consider two estimators previously proposed in the evolutionary
computation community, namely the subvector-dominance assignment
(SD) and the epsilon-dominance assignment (ED). We further propose
two novel density estimators specific to test case generation, namely the
token-based density estimator (TDE) and the path-based density estima-
tor (PDE). Based on the CodeBERT model tokenizer, TDE uses natural
language processing to measure the semantic distance between test cases.
PDE, on the other hand, considers the distance between the source-code
paths executed by the test cases. We evaluate these density estimators
within EvoSuite on 100 non-trivial Java classes from the SF110 bench-
mark. Our results show that the proposed path-based density estimator
(PDE) outperforms all other density estimators in enhancing mutation
scores. It increases mutation scores by 4.26 % on average (with a max of
over 60%) to the traditional crowding distance.

Keywords: software testing · search-based software engineering · test
case generation · density estimators

1 Introduction

Many-objective evolutionary algorithms (MOEAs) have been used extensively
in literature for automatically generating test cases [2,11,20,23]. These algo-
rithms optimize multiple objectives (testing criteria) simultaneously, such as
code coverage criteria (e.g., lines, branches) and quality metrics (e.g., mutation
score). Previous studies have shown that MOEAs outperform single-objective
algorithms in terms of both code coverage and fault detection [6,20,23]. MOEAs
have led to various advancements in automated test case generation, such as (1)
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achieving high code coverage [16,23] and (2) having fewer smells [22] compared
to manually-written test cases, and (3) detecting unknown bugs [1,15].

One of the open challenges in applying MOEAs to test case generation is
maintaining a strong selective pressure [19]. Selective pressure is crucial to guide
the search towards the Pareto front, where the best solutions are located. The
higher the selective pressure, the more likely the algorithm is to find high-quality
solutions [19]. However, maintaining selective pressure is challenging when opti-
mizing a large number of objectives as the search space becomes more complex.

One of the key components in MOEAs that increases the selective pres-
sure is the density estimator. Density estimators are used to measure the den-
sity/distributions of solutions in the objective space [18]. These estimators intro-
duce innovative methods for comparing and selecting solutions that would other-
wise be non-comparable based solely on dominance criteria [18,19]. The crowding
distance (CD) is a widely used density estimator in MOEAs [18] and the default
density estimator used in NSGA-II [8] and by extension DynaMOSA [23].

In this paper, we propose two novel density estimators as an alternative to
the classical CD, namely the token-based density estimator (TDE) and the path-
based density estimator (PDE). The TDE and PDE are designed to increase
the selective pressure within the domain of test case generation as they measure
features that are specific to tests. The token-based density estimator measures
the semantic distance between test cases using the CodeBERT model tokenizer,
i.e., if two tests share similar tokens/keywords. We hypothesize that semanti-
cally similar test cases are likely to cover similar parts of the code with similar
execution states. Conversely, the path-based density estimator considers the dis-
tance between the different source-code paths executed by the test cases. We
hypothesize that test cases that took a different path through the code to reach
a node may result in different internal code states.

To evaluate the proposed density estimators, we conducted an empirical
study on 100 non-trivial Java classes from the SF110 benchmark [13,23]. We
compared the proposed density estimators with two theoretical state-of-the-art
density estimators from the evolutionary computation community for many-
objective problems, namely the subvector-dominance assignment (SD) and the
epsilon-dominance assignment (ED) [18], and the classical crowding distance
(CD) [8] w.r.t. their ability to generate test suites with higher mutation score,
used as a measure for the fault detection capability.

Our results show that the path-based density estimator (PDE) outperforms
all other density estimators in enhancing mutation scores. It increases mutation
scores by 4.26 % on average (with a max of over 60%) to the traditional crowding
distance. The classical crowding distance performed the second best in terms of
mutation score. The structural coverage of the different density estimators did
not show significant differences.

In summary, we make the following contributions:

1. Two novel density estimators designed for automated test case generation.
2. An empirical evaluation of the proposed density estimators on 100 non-trivial

Java classes from the SF110 benchmark.
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3. A comparison of the proposed density estimators with two state-of-the-art
density estimators from the evolutionary computation community and the
classical crowding distance.

4. A full replication package containing the results and the analysis scripts [25].

The structure of the paper is as follows: Section 2 provides background infor-
mation on many-objective test generation and density estimators. Section 3
describes the proposed density estimators while Sect. 4 describes the experi-
mental setup. Section 5 presents the results of the empirical study, and Sect. 6
discusses the threats to validity. Finally, Sect. 7 concludes the paper and outlines
future work.

2 Background and Related Work

Previous research has introduced search-based software test generation (SBST)
methods that employ meta-heuristics—and genetic algorithms among others—
to create tests at various testing levels, including unit [13], integration [9], and
system-level testing [3]. Search-based unit test generation is a particularly active
area of study in this field, where iterative optimization algorithms evolve tests
towards satisfying multiple criteria (e.g., structural coverage, mutation score) for
a given class under test (CUT). Prior research indicates that these techniques
effectively achieve high code coverage, enhance fault detection [1], and outper-
form non-SBST-based approaches [16]. Among others, evolutionary algorithms
show better performance than large-language models when generating tests for
code not available on GitHub [28] (i.e., the training set) and are not impacted
by data leakage issues [26]. SBST techniques have proven successful in testing
complex systems [17] and for different programming languages [11,13].

Dynamic Many-Objective Sorting Algorithm (DynaMOSA). The state-
of-the-art algorithm for unit test generation is a many-objective evolutionary
algorithm called DynaMOSA [23]. Algorithm 1 outlines the pseudo-code of
DynaMOSA [23]. This approach targets multiple coverage elements (e.g., lines,
branches, mutants) simultaneously as search objectives. To achieve high scal-
ability, DynaMOSA utilizes the hierarchy of dependencies between different
coverage targets to update the list of objectives dynamically (lines 5 and 10
in Algorithm 1). The list of objectives is updated at each generation by (1)
removing already covered targets and (2) adding new targets that are not cov-
ered yet but that are structurally depended on the covered ones. This dynamic
approach allows to focus the search on the uncovered targets, thus reducing
the search space and improving the search efficiency. Recent independent stud-
ies [6,20,24] have shown that DynaMOSA outperforms single-objective and
other many-objective evolutionary algorithms w.r.t. structural and mutation
coverage. Therefore, DynaMOSA currently is the default algorithm in Evo-
Suite.
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Algorithm 1: DynaMOSA
Input:
U = {u1, . . . , um} the set of coverage targets of a program.
Population size M
G = 〈N, E, s〉: control dependency graph of the program
φ : E → U : partial map between edges and targets
Result: A test suite T

1 begin
2 U∗ ←− targets in U with not control dependencies
3 t ←− 0 // current generation
4 Pt ←− RANDOM-POPULATION(M)
5 archive ←− UPDATE-ARCHIVE(Pt, ∅)
6 U∗ ←−UPDATE-TARGETS(U∗, G, φ)
7 while not (search budget consumed) do
8 Qt ←− GENERATE-OFFSPRING(Pt)
9 archive ←− UPDATE-ARCHIVE(Qt, archive)

10 U∗ ←−UPDATE-TARGETS(U∗, G, φ)
11 Rt ←− Pt

⋃
Qt

12 F ←− PREFERENCE-SORTING(Rt, U∗)
13 Pt+1 ←− ∅
14 d ←− 0
15 while | Pt+1 | + | Fd | ≤ M do
16 CROWDING-DISTANCE-ASSIGNMENT(Fd, U∗)
17 Pt+1 ←− Pt+1

⋃
Fd

18 d ←− d + 1

19 Sort(Fd) //according to the crowding distance
20 Pt+1 ←− Pt+1

⋃
Fd[1 : (M− | Pt+1 |)]

21 t ←− t + 1

22 T ←− archive

2.1 Density Estimator for Many-Objective Optimization

A key feature in DynaMOSA, as in any many-objective algorithms, is the
density-estimation method used to increase the selection pressure towards the
Pareto front. Selective pressure is achieved by (1) sorting the test cases in the
population based on the preference criterion (line 12 in Algorithm 1) and (2)
selecting the best tests based on their crowding distance (line 16 in Algorithm 1).
The former promotes the test cases closer to each objective (coverage target),
and the latter promotes the test cases more diverse in the objective space. More
specifically, the crowding distance is calculated as the sum of the differences in
the objective values of the two neighboring test cases [8]. However, as pointed out
by Köppen and Yoshida [18], the crowding distance does not scale well with the
number of objectives, as it may assign the maximum distance (infinite) to all test
cases in the first non-dominated front. To address this limitation, they proposed
alternative methods to calculate the crowding distance, such as the sub-vector
dominance and epsilon dominance assignment. We elaborate on these methods
in the following sections.

Sub-vector Dominance Assignment. The first alternative estimator intro-
duced by Köppen and Yoshida [18] for many-objective numerical problems is the
sub-vector dominance. This estimator is applied to each non-dominated front,
and therefore, it is used to calculate the solution density for all solutions (test
cases in our context) within the same front. The algorithm first assigns an
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infinite distance to single-member fronts, suggesting that an individual inher-
ently exhibits maximum diversity. For fronts containing multiple solutions, it
sets each test case’s distance to the highest possible value, indicating that their
dominance still needs to be evaluated. Then, this estimator processes each pair
of test cases within the same front. For every pair (p1, p2), it assesses their
effectiveness against each objective in the set using the corresponding objective
values/scores. Two counters dominate1 and dominate2 are used to count the
number of objectives where p1 performs better than p2 and vice versa. These
counters determine how much (the strength) each test case is dominated by the
other across all objectives.

After evaluating the dominance of the test cases, the distance for each test
case is adjusted. The new distance is the smaller value between its current dis-
tance and the number of goals where it is found to be inferior. Essentially, this
means that the more a test case is dominated by others, the smaller its dis-
tance becomes, reflecting its relative performance deficit across the objectives.
Hence, this estimator favors test cases demonstrating superior performance over
a broader range of objectives, fostering a varied pool of solutions throughout the
evolutionary cycle.

Epsilon-Dominace Assignment. The epsilon-dominance assignment provides
a more detailed comparison between solutions than sub-vector dominance.
Instead of simply counting how many objectives a solution falls short on, it
measures how much worse a solution is in each objective. Similarly, to the other
density estimators, this method is applied to each non-dominated front.

For each non-dominated solution p1, this estimators first calculates all ε-
dominance scores of p1 compared to all other solutions in the same fronts. For
each pair of solutions (p1, p2), this metric considers all objective values of p2
that are worse than the corresponding objectives of p1. The epsilon dominance
of p1 over p2 is the smallest value ε that, if subtracted from all objectives
of p2, makes p2 Pareto-dominating p1. This concept is often called additive ε-
dominance in the related literature [18]. Finally, the density measure of a solution
is computed as the smallest of all its epsilon dominance calculated w.r.t. to all
other solutions in the same non-dominated front. The larger the distance for a
solution p1, the higher the “effort” or the epsilon value needed to make the other
solutions dominate p1.

3 Density Estimators for Test Cases

In this section, we present two novel density estimators for test cases as alterna-
tive to the crowding distance, i.e., line 16 of Algorithm1. These estimators are
designed to measure (and thus promote) the diversity of the test cases gener-
ated by DynaMOSA. The first estimator is based on the semantic content of
the test cases (or genotype) related to the keywords/tokens that form the test
cases. The second estimator works in the objective space (also called phenotype)
and measures the diversity of the execution paths covered by the test cases. We
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describe the two estimators in detail and discuss their integration into the main
loop of the DynaMOSA algorithm.

3.1 Token-Based Distance Assignment

We introduce this novel distance assignment with the idea of using natural lan-
guage processing (NLP) methods to measure the semantic diversity of test cases.
Our intuition is that at the same level of dominance, test cases that are seman-
tically more diverse should be assigned a higher probability of mating since they
may cover different paths in the CUT or use more diverse input values.

To measure the semantic content of the test cases, we rely on the tokenizers
of large language models (LLMs), particularly the CodeBERT pre-trained model
by Microsoft [12] and publicly available on HuggingFace1. The CodeBERT tok-
enizer is designed to understand both programming and natural languages as
it operates similarly to the tokenization process of BERT model [10] but with
customization to handle code syntax and semantics.

CodeBERT uses the Byte-Pair Encoding (BPE) algorithm for its tokeniza-
tion [12], which combines both character- and word-level tokenization. BPE
builds an initial vocabulary of individual characters and gradually builds up a
vocabulary of more frequent and longer sub-word units (byte pairs) by combining
pairs of symbols (or characters) that frequently occur together. BPE iteratively
counts the frequency of pairs of adjacent symbols in the corpus and merges the
most frequent pair to create a new symbol (iterative learning). This process is
repeated for a predefined number of merge operations, leading to a final vocab-
ulary that includes a mix of characters, common sub-words, and full words. The
tokenization of new text (test cases in our case) is applied by splitting it into
individual characters and then applying the merge rules learned during train-
ing. The merging procedure combines characters and sub-words into the tokens
present in its final vocabulary.

At the end of the tokenization process, each test case (here considered as
text) is tokenized into different tokens, grouped in special and non-special tokens.
The former tokens are essential for the model to understand code structure. For
instance, the [SEP] tokens delimit different segments within the input sequence,
such as demarcating the end of a code snippet and the beginning of a natural
language comment or vice versa. Instead, non-special tokens are the regular
tokens representing the input text’s content (tests in our case).

Token-Based Density Estimator. Algorithm 2 outlines the pseudo-code of
the distance assignment metric based on the token frequency. The algorithm
takes in input the current set of objectives U∗, and a list of non-dominated test
cases Fi. The algorithm starts by initializing two maps: (1) a mapping of test
cases to their respective token sets (TokenMap in line 2), and (2) a mapping of

1 https://huggingface.co/microsoft/codebert-base.

https://huggingface.co/microsoft/codebert-base
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Algorithm 2: Token-based Distance Assignment
Input:
U∗: current set of objectives
Fi list of non-dominated test cases
Output: Updated test cases with distance values

1 begin
2 TokenMap ←− empty map // mapping test cases to tokens
3 TokenFrequency ←− empty map // mapping tokens to their frequencies
4 foreach τ ∈ Fi do
5 text ←− TO-TEXT(τ)
6 tokens ←− TOKENIZER(text) // Applying CodeBERT tokenizers
7 TokenMap[τ ] ←− tokens
8 /* Update tokens frequencies */
9 foreach token ∈ tokens do

10 if token ∈ TokenFrequency then
11 TokenFrequency[token] ←− TokenFrequency[token] + 1
12 else
13 TokenFrequency[token] ←− 1
14 end

15 end

16 end
17 foreach τ ∈ Fi do
18 tokens ←− TokenMap[τ ]
19 frequency ←− ∞
20 foreach token ∈ tokens do
21 frequency ←− MIN(TokenFrequency[token], frequency)
22 end
23 SET-DIVERSITY(τ) = 1.0 / frequency

24 end

25 end

tokens to their occurrence frequencies across all test cases (TokenFrequency in
line 3). Then, the algorithm tokenizes the test and updates the token frequencies
among all test cases.

Each test case τ is converted into its list of tokens using the CodeBERT tok-
enizer (function TOKENIZER in line 6). The resulting tokens are stored in the
TokenMap and associated with τ in the mapping. Subsequently, the algorithm
updates token frequencies stored in TokenFrequency by iterating over each token
in the tokens set of τ . The token frequencies calculated in lines 9–14 of Algo-
rithm2 are used to compute a diversity value for each test case with the loop in
lines 17–24. Specifically, the algorithm calculates the minimum token frequency
for all tokens of a test case τ (lines 19–22). Finally, the assigned distance for τ
is calculated as the inverse of this minimum token frequency (line 23).

This token-based metric prioritizes test cases containing rarer tokens, assum-
ing such tests may explore paths or scenarios in the software under test that are
less frequently executed. We rely on the CodeBERT tokenizer as it allows us to
capture nuances in the code that textual-based methods might miss.

3.2 Path-Based Density Estimator

We proposed a new substitute distance assignment tailored for test case gener-
ation and based on dynamic information from the test execution results. Our
intuition is that test cases that reach the coverage frontier (i.e., the yet uncov-
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Algorithm 3: Path-based Distance Assignment
Input:
U∗: current set of objectives
Fi list of non-dominated test cases
Output: Updated test cases with distance values

1 begin

2 foreach τi ∈ Fi do
3 Li = COVERED-LINES(τi) // set of lines covered by τi
4 foreach τj ∈ Fi do
5 Lj = COVERED-LINES(τj) // set of lines covered by τj
6 distances(τi, τj) ←− JACCARD-DISTANCE(Li, Lj)
7 distances(τj , τi) ←− distance(τi, τj)

8 end

9 end
10 visited ←− ∅ // Set of already-visited test cases
11 for index ← 0 to | Fi | do
12 bestTest ←− ∅ // test case to select
13 maxDiversity ←− −∞ // diversity of the test case to select
14 foreach τ ∈ Fi do
15 if τ /∈ visited then
16 distance ←− AVERAGE-DISTANCE(index, visited, distances)
17 /* Select the case with the largest distance to the already considered

ones */
18 if distance ¿ maxDiversity then
19 maxDiversity ←− distance
20 bestTest ←− τ

21 end

22 end

23 end
24 visited ←− visited + {τ}
25 SET-DIVERSITY(τ) = maxDiversity

26 end

27 end

ered targets/branches) passing through different/diverse execution paths of the
software under test are more likely to lead to more diverse execution states (e.g.,
class attributes and internal variable values).

The new assignment procedure is outlined in Algorithm3. It leverages line
coverage data from previously executed tests in DynaMOSA’s early stages, thus
avoiding re-execution. For any two test cases, τi and τj , we compute their Jaccard
distance based on the sets of lines covered by each, as follows:

Jaccard(τi, τj) = 1 − | Li ∩ Lj |
| Li ∪ Lj | (1)

where Li and Lj represent the lines covered by τi and τj , respectively. This metric
quantifies the dissimilarity in code coverage between test cases, accounting for
all lines covered during execution, including those outside the class under test
(e.g., the lines covered for input objects). The pairwise distances are stored in
the distances matrix in lines 6–7 of Algorithm 3.

Subsequently, our algorithm adopts a greedy strategy to select test cases that
maximize diversity iteratively (lines 11–24 in Algorithm3). Initially, it selects
the test case with the highest Jaccard distance from the pre-computed distances
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matrix distances. The selected test is added to the set of visited tests (visited)
and assigned a distance equal to its maximum Jaccard distance. In each following
iteration, the greedy strategy calculates the average Jaccard distance for all
test cases that have not been selected yet (if-condition in line 15) using the
AVERAGE-DISTANCE function (line 16). This function calculates the average
distance of a test case τ to all other previously chosen ones and stored in visited.
Among the yet-to-select test cases, the algorithm greedily chooses the one with
the largest average Jaccard distance (lines 18–21). The diversity of the selected
test case (bestTest) is then updated to reflect this maximum value (line 25); it
is marked as visited (line 24). This process repeats until all test cases are selected
and assigned a diversity value, reflecting their contribution to covering diverse
execution paths within the software under test.

Code Optimization. To speed up the calculation of the pairwise distances (for
our estimators), we pre-allocate a square matrix to store the distances between all
test cases, whose dimension (number of columns/rows) is equal to the size of the
front. In the worst-case scenario, the font size corresponds to the population size.
However, DynaMOSA can increase the population size if, during the preference
criterion calculation, the first front is larger than the population size. In this case,
the population size is increased to the first font size, which requires increasing
the size of the distance matrix. In case the population size is smaller than the
matrix dimension, the latter is not scaled but kept at the largest values in case
the population size increases again in subsequent search iterations.

Pre-allocating a matrix of fixed size was critical to (1) speed up the search,
as allocating many large matrices incurs a high computational cost, and (2)
avoid the overhead of dynamically resizing the matrix during the search. This
is also critical to avoid memory exhaustion since creating a new matrix for each
iteration will consume more significant memory and at a pace that is too fast
for the garbage collector to free the memory. We did experience indeed many
memory-related crushes and issues when we did not pre-allocate the matrix.

4 Empirical Study

To investigate the performance of the proposed density estimators within the
context of test case generation, we perform an empirical evaluation to answer
the following research question:

RQ How do the proposed density estimators compare to the classical crowding
distance w.r.t. mutation score?

More specifically, we look at the performance of (i) two state-of-the-art
density estimators from the evolutionary computation community, namely the
subvector-dominance assignment (SD) and the epsilon-dominance assignment
(ED), when applied to the context of test case generation and (ii) two novel
density estimators created specifically for test case generation introduced in this
work, namely the token-based density estimator (TDE) and the path-based den-
sity estimator (PDE).
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4.1 Benchmark

We performed the evaluation on a subset of the SF110 benchmark [14], which
is a widely used benchmark in the literature for evaluating test case genera-
tion techniques for Java [14,21,23,24]. We do not consider the whole SF110
corpus as many classes are trivial [27] and the total number of classes in the cor-
pus (23,886 Java classes) would take too long to run. Specifically, we randomly
selected 100 classes from the SF110 corpus with non-trivial complexity (Cyclo-
matic Complexity (CC) > 3). This same selection procedure has been used in
related literature [21,23,24].

4.2 Parameter Settings

For the parameter settings, we adopted the defaults used by EvoSuite [13] (test
case generation tool used in our experiment). These settings have been widely
used in literature and previous studies have shown that although parameter tun-
ing impacts the performance of search algorithms, the default parameter values
provide reasonable and acceptable results [5]. Therefore, we used DynaMOSA
[23] using a single point crossover with a crossover probability of 0.75, muta-
tion with a probability of 1/n (n = number of statements in the test case),
tournament selection, and a population size of 50. As we are focussing on fault
detection, we set branches and strong mutation as the objectives to optimize.
The search budget per unit under test is 300 s.

4.3 Experimental Protocol

To answer the research question, we ran EvoSuite with the four density estima-
tors (SD, ED, TDE, and PDE) and the crowding distance (CD) as a baseline on
the 100 classes from the SF110 benchmark and recorded the final branch cover-
age and mutation score achieved by the generated test cases. To account for the
stochastic nature of search-based test case generation, each unit under test was
run 20 times. In total, we performed 10 000 runs, consisting of 20 repetitions of 5
configurations on 100 units under test. This required (10000 runs×300 s)/(60 s×
60 min×24 h) ≈ 35 d of consecutive computation time. The experiment was per-
formed on a system with an AMD Ryzen Threadripper PRO 3995WX (64 cores
2.7 GHz) with 256 GB of RAM.

After the experiment, we compared the mutation score achieved by the test
cases generated using the different density estimators and performed statistical
analysis. We applied the unpaired Wilcoxon signed-rank test [7] with a threshold
of 0.05. This non-parametric statistical test determines if two data distributions
are significantly different enough to reject the null hypothesis that the two dis-
tributions are equal. In addition, we apply the Vargha-Delaney Â12 statistic [29]
to determine the effect size of the result, which determines the magnitude of the
difference between the two data distributions.
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Fig. 1. Difference in achieved mutation score across the classes in the benchmark using
the different density estimators compared to the crowding distance

5 Results

This section presents the results of our empirical study. All differences in results
are presented in absolute differences (percentage points).

Figure 1 shows the difference in the mutation score achieved by the test
cases generated using the different density estimators compared to the classi-
cal crowding distance. The datapoints in the boxplot represent the difference in
the median mutation score for each class in the benchmark. The results show
that the path-based density estimator (PDE) achieves the highest mean muta-
tion score (53.90 %) across the classes in the benchmark and improves the most
over crowding distance. The crowding distance (CD) achieves a mean mutation
score of 49.64 %. The token-based density estimator (TDE) has a mean muta-
tion score of 49.17 %, which is slightly lower than the crowding distance. The
epsilon-dominance assignment (ED) and the subvector-dominance assignment
(SD) achieve mean mutation scores of 48.83 % and 48.64 %, respectively.

We, additionally, performed a statistical analysis to determine the signifi-
cance of the differences in the mutation score achieved by the test cases gen-
erated using the different density estimators. Table 1 shows the results of this
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Table 1. Results of the statistical analysis of the achieved mutation score using Vargha-
Delaney Â12 statistic

Comparison #Win #No diff. #Lose

Large Medium Small Negl Small Medium Large

Path-based vs. Token-based 18 11 4 63 - 2 2

Path-based vs. Epsilon 16 10 7 62 1 3 1

Path-based vs. Sub-Vector 17 12 2 66 - 3 -

Path-based vs. Crowding 12 12 3 71 1 1 -

Token-based vs. Epsilon 2 7 3 73 3 8 4

Token-based vs. Sub-Vector 7 8 - 76 1 5 3

Token-based vs. Crowding 2 2 - 85 2 4 5

Epsilon vs. Sub-Vector 3 2 2 90 - 2 1

Epsilon vs. Crowding 4 1 4 79 3 6 3

Sub-Vector vs. Crowding 3 2 - 82 1 5 7

statistical analysis based on a p-value ≤ 0.05. In this table, the #Win columns
indicate the number of times that the left density estimator has a statistically
significant improvement over the right one, the #No diff. column indicates the
number of times that there is no evidence that the two competing density esti-
mators are different, and the #Lose columns indicate the number of times that
the left density estimator has statistically worse results than the right one. The
#Win and #Lose columns also include the Â12 effect size, classified into Small,
Medium, and Large.

The results show that the path-based density estimator (PDE) outperforms
the other density estimators in most comparisons. In particular, PDE outper-
forms the epsilon-dominance assignment (ED) in 33 out of 100 comparisons,
the token-based density estimator (TDE) in 33 out of 100 comparisons, the
subvector-dominance assignment (SD) in 31 out of 100 comparisons, and the
crowding distance (CD) in 27 out of 100 comparisons. The epsilon-dominance
assignment (ED) outperforms the token-based density estimator (TDE) in 15
out of 100 comparisons, the subvector-dominance assignment (SD) in 7 out of
100 comparisons, and the crowding distance (CD) in 9 out of 100 comparisons.
The token-based density estimator (TDE) outperforms the subvector-dominance
assignment (Sub-Vector) in 15 out of 100 comparisons and the crowding distance
(CD) in 4 out of 100 comparisons. Lastly, the subvector-dominance assignment
(SD) outperforms the crowding distance (CD) in 5 out of 100 comparisons. Inter-
estingly, the classical crowding distance (CD) performs better in more cases than
the subvector-dominance assignment (SD), the epsilon-dominance assignment
(ED), and the token-based density estimator (TDE). However, in the majority
of the classes in the benchmarks, there is no significant difference between the
density estimators.
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In addition to the mutation score, we also looked at the branch coverage
achieved by the generated test cases. We observed that the branch coverage
achieved by the test cases generated using the different density estimators is
identical. This indicates that the difference in mutation score is not due to dif-
ferences in branch coverage but rather due to the improvement in the density
estimators.

6 Threats to Validity

This section discusses the potential threats to the validity of our study.

External Validity: One of the threats to the external validity of our study
is the selection of the benchmark. The selection of the benchmark impacts the
generalizability of the results. To address this threat, we used a subset of the
SF110 benchmark, which is a widely used benchmark in the literature for eval-
uating test case generation techniques for Java. The subset of the benchmark
was selected based on the complexity of the classes to ensure that the results are
not biased by trivial classes. However, the results may not generalize to other
benchmarks or programming languages.

Conclusion Validity: The stochastic nature of search-based test case genera-
tion introduces a threat to the conclusion validity of our study. To mitigate this
threat, we ran each configuration 20 times with different random seeds. This
allows us to draw statistically significant conclusions from the results. We have
followed the best practices for running experiments with randomized algorithms
as laid out in well-established guidelines [4]. Additionally, we used the unpaired
Wilcoxon signed-rank test and the Vargha-Delaney Â12 effect size to assess the
significance and magnitude of our results.

7 Conclusions and Future Work

In this paper, we have presented two novel density estimators for automated
test case generation to increase the selective pressure within the search front.
We compared the proposed density estimators with two state-of-the-art den-
sity estimators from the evolutionary computation community and the classical
crowding distance. Our results show that our proposed path-based density esti-
mator (PDE) is the most effective in promoting the diversity of the solutions
in the population, leading to a better spread of the solutions in the objective
space and a higher mutation score. The classical crowding distance performed
the second best in terms of mutation score.

In future work, we will evaluate the proposed density estimators on other test
generation problem—e.g., system-level test case generation—and other software
testing problems, diversity-based test case prioritization. We also plan to (1) use
different tokenizers as well as (2) different LLMs for the test case embeddings
as alternatives to CodeBERT. Finally, we plan to analyze the relation between
the diversity of the test cases and the fault detection capability of the generated
test suites.



Higher Fault Detection Through Novel Density Estimators 31

References

1. Almasi, M.M., Hemmati, H., Fraser, G., Arcuri, A., Benefelds, J.: An industrial
evaluation of unit test generation: finding real faults in a financial application. In:
2017 IEEE/ACM 39th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), May 2017, pp. 263–272. IEEE (2017).
https://doi.org/10.1109/ICSE-SEIP.2017.27

2. Arcuri, A.: Test suite generation with the many independent objective (MIO) algo-
rithm. Inf. Softw. Technol. 104, 195–206 (2018)

3. Arcuri, A.: RESTful API automated test case generation with EvoMaster. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 28(1), 1–37 (2019)

4. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing ran-
domized algorithms in software engineering. Softw. Test. Verification Reliab. 24(3),
219–250 (2014)

5. Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investiga-
tion in search-based software engineering. Empir. Softw. Eng. 18, 594–623 (2013)

6. Campos, J., Ge, Y., Albunian, N., Fraser, G., Eler, M., Arcuri, A.: An empirical
evaluation of evolutionary algorithms for unit test suite generation. Inf. Softw.
Technol. 104, 207–235 (2018). https://doi.org/10.1016/j.infsof.2018.08.010

7. Conover, W.J.: Practical Nonparametric Statistics, vol. 350. Wiley, Hoboken (1999)
8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
9. Derakhshanfar, P., Devroey, X., Panichella, A., Zaidman, A., van Deursen, A.:

Towards integration-level test case generation using call site information. arXiv
preprint arXiv:2001.04221 (2020)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

11. Erni, N., Mohammed, A.A.M.A., Birchler, C., Derakhshanfar, P., Lukasczyk, S.,
Panichella, S.: SBFT tool competition 2024–Python test case generation track.
arXiv preprint arXiv:2401.15189 (2024)

12. Feng, Z., et al.: CodeBERT: a pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155 (2020)

13. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, pp. 416–419 (2011)

14. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test generation
using EvoSuite. ACM Trans. Softw. Eng. Methodol. (TOSEM) 24(2), 1–42 (2014)

15. Fraser, G., Arcuri, A.: 1600 faults in 100 projects: automatically finding faults while
achieving high coverage with EvoSuite. Empir. Softw. Eng. 20, 611–639 (2015)

16. Jahangirova, G., Terragni, V.: SBFT tool competition 2023-Java test case gener-
ation track. In: 2023 IEEE/ACM International Workshop on Search-Based and
Fuzz Testing (SBFT), pp. 61–64. IEEE (2023)

17. Khatiri, S., Saurabh, P., Zimmermann, T., Munasinghe, C., Birchler, C.,
Panichella, S.: SBFT tool competition 2024: CPS-UAV test case generation track.
In: 17th International Workshop on Search-Based and Fuzz Testing (SBFT), Lis-
bon, Portugal, 14–20 April 2024. ZHAW Zürcher Hochschule für Angewandte Wis-
senschaften (2024)
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Abstract. Search-based test generation techniques have shown promis-
ing results when applied to Android. The most common approach is to
use genetic algorithms, but defining adequate crossover and mutation
operators is challenging for Android testing: The actions that form tests
are often state-dependent, which implies that they cannot be arbitrar-
ily re-arranged without leading to non-executable tests. In this paper,
we therefore investigate the use of estimation of distribution algorithms
(EDAs), which are search algorithms where probability distributions over
the input space are adapted and sampled instead of using explicit varia-
tion operators. We introduce MIOEDA, a many-objective search algo-
rithm that integrates the Many Objective Independent (MIO) search
algorithm, which was specifically designed for test generation, with esti-
mation of distribution search, thus enabling the search for code coverage
without requiring classical variation operators. Using our implementa-
tion of MIOEDA as part of the open source Android test generator
MATE for an evaluation study on 100 Android apps demonstrates that
MIOEDA can serve as a successful replacement of search algorithms
based on traditional variation operators.

Keywords: Android · MIO · EDA · Automated Test Generation

1 Introduction

Various test generation approaches have been explored to reduce the human
effort involved in testing Android apps. Search-based testing, primarily through
the form of genetic algorithms [3,14,15], has shown promising results. How-
ever, one particular difficulty that arises when applying genetic algorithms to
Android is the creation of eligible crossover and mutation operators: Since the
individual actions that form a test case are often state dependent, they cannot
be arbitrarily re-arranged during crossover without breaking the test. Likewise,
changing, inserting or deleting individual actions as part of mutation may break
test sequences. Existing approaches try to circumvent this problem by defining
complex variation operators that take these dependencies into account [2,12,18],
avoid dependencies by interacting with screen coordinates rather than wid-
gets [13], or by applying crossover at the test suite level [13].
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While such variation operators are an integral part of many metaheuristic
search algorithms, the family of estimation of distribution algorithms (EDAs) [9]
stands out in that it can operate without explicit variation operators, and instead
samples individuals from a probabilistic model, which is iteratively refined with
the information gained through fitness evaluations [11]. Although EDAs have
been successfully applied in many different domains [9], their use in the context
of Android test generation has not seen much attention so far.

In this paper we therefore investigate a novel search-based test generation
algorithm that combines the benefits originating from EDAs (requiring no vari-
ation operators) with current state-of-the-art search-based test generation. In
particular, our approach builds on top of the Many Independent Objective
(MIO) algorithm [3], which was designed specifically to deal with the large
number of coverage objectives during test generation. The MIO algorithm uses
no crossover, and instead of mutating individuals we use a probabilistic model
that encodes information about each objective in a tree-like structure [17]. A new
test can then be directly sampled from the model and the iterative refinement
ensures that the sampled tests are optimised towards satisfying the individual
objectives without the need to perform exploitation through mutation.

We implemented MIOEDA as an extension of the MATE [7] search-based
test generator for Android, and empirically evaluate it on a set of 100 F-Droid
apps. The results indicate that MIOEDA provides a viable alternative for the
test generation in Android. In particular, MIOEDA is slightly ahead of the basic
MIO approach using classical mutation, a random exploration baseline, and the
related approach of the state-of-the-art tool Stoat [19].

2 Background

2.1 Automated Android Testing

Search-based algorithms [2,12,13,18] are a popular variant among the different
approaches to generate tests for Android [10]. In particular, genetic algorithms
evolve a population of chromosomes (i.e., tests) with respect to one or multiple
objective functions, such as branch coverage. As part of the evolution, the indi-
viduals undergo crossover and mutation to form new chromosomes for the next
generation. However, the construction of those search operators for Android is
difficult because changes to a system test may result in the test no longer being
executable if state dependencies are violated.

One approach to overcome this problem is to design the crossover and muta-
tion operators such that they operate only on individual segments [12], i.e., parts
of the app under test (AUT) that can be traversed independently, e.g., activities.
This can also be achieved by leveraging a GUI model to derive valid offspring
during crossover [18]. In particular, the cutpoint between two tests can be cho-
sen such that the combined action sequence remains executable according to the
model after crossover. To avoid handling dependencies explicitly, other proposed
approaches include repeating crossover until a valid offspring is formed [2], or
defining tests as sequences of actions that are state independent, i.e., they are
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not coupled to a specific widget but solely on its coordinates [13]. This allows
to arbitrarily reassemble actions while maintaining an executable test, although
certain actions might have no effect, e.g., a click on a coordinate that is not
backed up by a clickable widget. Finally, when evolving test suites rather than
test cases, crossover only re-arranges tests rather than modifying them [8,13].
However, mutation nevertheless requires modifying individual tests.

The Stoat [19] approach is an exception in that it uses search, but no explicit
variation operators. In a first phase, Stoat tries to explore the AUT as much
as possible using a dynamic exploration strategy and thereby constructs a GUI
model that records which actions have been executed how often in a particular
state. In a second phase, this GUI model is converted to a probabilistic model
in which the initial action probabilities are derived from the recorded execution
frequencies as well as the action type, e.g., clicks are favoured over scrolling
actions. The action probabilities are mutated, and test suites sampled from the
model using Gibbs sampling [19] are evaluated using a linear combination of
model coverage, code coverage and test diversity. This is similar to our objective
of using an EDA, but does not provide the ability to optimise for individual
objectives (e.g., branches, activities, etc.), which in other testing domains is
done using many-objective optimisation algorithms (MOAs) [3,14,15].

2.2 Estimation of Distribution Algorithms

Estimation of distribution algorithms are evolutionary algorithms, but in con-
trast to genetic algorithms, EDAs can operate without crossover and mutation
operators [11]. Individuals are sampled from a probabilistic model that describes
the input space, their fitness is evaluated, and a selection operator chooses the
most promising candidates, which in turn are used to update the probabilistic
model [9]. There are different variants of EDAs [9], and one distinguishing factor
is the representation of the probabilistic model. In the simplest case this can
be a probability vector, but more complex input structures require more com-
plex models. Since in Android testing there are dependencies between actions
(i.e., actions are state dependent), the parameters of actions are most often
real-valued, and the number of actions per test case may be variable, tree-like
structures are more appropriate. A popular such variant is used in the Probabilis-
tic Incremental Program Evolution (PIPE) [17] algorithm, which was originally
applied to derive programs consisting of sequences of instructions. This can be
mapped to our context, where programs represent test cases and the instruc-
tions refer to the individual actions. PIPE encodes the probabilistic model in
a probabilistic prototype tree (PPT) from which new programs are sampled by
traversing the tree from the root to a terminal node. As these paths can be of
varying length, they ideally fit the structure of a test case that is also composed
of a variable number of actions. Moreover, the state dependency of actions can be
adequately mapped by the parent-child relation (edge connection) of two nodes,
i.e., an action leading to the current state (child node) is only applicable if the
predecessor state (parent node) has been previously traversed.
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2.3 Many Independent Objective Search for Code Coverage

Test generation with the aim to achieve high code coverage is a many-objective
problem where objectives usually refer to coverage goals (e.g., branches). Popular
algorithms include the Many Objective Sorting Algorithm (MOSA [14,15]) and
Many Independent Objective (MIO) algorithm [3]. The latter is of particular
relevance for our context, since it is designed for problems where the number of
objectives can become exceedingly large. The MIO algorithm (see Algorithm 1)
maintains an archive for each objective k (e.g., branch), in which a population
of up to n tests is stored. Initially the archive is empty (Algorithm1, line 1) and
the first test that is generated randomly is inserted (line 2–3).

From this step onwards, MIO either samples a test randomly (line 5–6) or
from the archive (line 7–8) until the termination condition is met. Tests sampled
from the archive are mutated (line 9), where the parameter m controls how many
mutations should be performed. Then, the fitness is evaluated with respect to
each objective and the archive is updated (line 11–14). If a test covers one or
more objectives, any previously archived tests for those objectives are replaced
by the new test. If the archive already stores a test that covers an objective, the
test is only replaced if it is better on a secondary criterion, e.g., length. If the
test does not cover an objective and the archive does not already include a test
that covers the objective, the test is inserted in the archive under the condition
that the population for the respective objective is not yet full. Otherwise, the
test replaces the least favorable test in the population assuming that the test is
better. A test that gets assigned the worst possible fitness value is ignored.

At the end of each generation Pr, n and m are updated (line 15) depending
on the parameter F denoting the beginning of the focused search phase, in which
more effort is put towards exploitation rather than exploration. This means that
the values of the parameters Pr and n decrease while the mutation rate m linearly
increases over time until the focused search begins, at which point Pr is set to 0
(tests are no longer sampled randomly but solely from the archive).

3 Combining MIO with EDA

We explore the use of EDAs for Android test generation by adapting and inte-
grating the PIPE algorithm (cf. Subsect. 2.2) into the state-of-the-art MIO
search algorithm. This requires the encoding of the probabilistic model through
an Application State Tree (AST) (cf. Subsect. 3.1) which is sampled for test cases
using an adaptation of PIPE’s original sampling procedure (cf. Subsect. 3.2).
After a new population has been drawn, the fitness of each test is evaluated and
the probabilistic model is refined (cf. Subsect. 3.3). Since MIO optimises towards
multiple objectives, a dedicated probabilistic model is used for each objective,
which replaces the archive (cf. Subsect. 3.4).

3.1 Application State Tree

The probabilistic model used in our approach is an Application State Tree
(AST), which differs from PIPE’s PPT in that the nodes refer to states of
the AUT and the actions applicable in a given state form the connections to
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adjacent states. More formally, an AST t = (N,E), consists of |N | nodes inter-
connected by |E| edges. Each node n = (s, d) ∈ N contains a state s and a
probability distribution d over the applicable actions in that state. An edge
e = ((s1, d1), a, (s2, d2)) ∈ E describes a transition from node n1 = (s1, d1) to
node n2 = (s2, d2), triggered by action a in state s1. In our context, a state s
represents the UI component hierarchy. We adopt an abstraction to prevent the
explosion of the search space. Specifically, two states are considered equal if they
satisfy the following conditions: (1) they belong to the same activity, (2) origi-
nate from the same package, and (3) possess identical widgets. Widget equality
is determined by two factors: (1) identical screen positions and (2) matching
height and width dimensions. An AST encodes the state sequences encountered
by all tests. For instance, the tests and their state sequences in Fig. 1a can be
represented as shown in Fig. 1b. Note that a transition into the same state is
represented by two distinct nodes, e.g., S2 to S2 of the first test in Fig. 1a.

Algorithm 1. Many Independent Objective Algorithm
Require: k > 0 � Number of objectives.
Require: n > 0 � Maximum population size for each objective in the archive.
Require: Pr ∈ [0, 1] � Probability for sampling a test randomly.
Require: F ∈ [0, 1] � Percentage of the search budget when focused search starts.
Require: m > 0 � Mutation rate.
1: Tk,n ← emptyArchive() � Maintains for each objective k a population |Tk| <= n.
2: test ← randomSample()
3: updateArchive(Tk,n, test)
4: while terminationConditionIsNotMet() do
5: if Pr > rand() then
6: test ← randomSample()
7: else
8: test ← archiveSample(Tk,n)
9: test ← mutate(test, m)

10: end if
11: for i = 0 to k do
12: fitness ← getF itness(test, i)
13: updateArchive(Tk,n, test, fitness, i)
14: end for
15: updateParameters(F, Pr, n, m)
16: end while
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Fig. 1. Tests and their encoding as AST.

3.2 Sampling Tests from the AST

To adapt PIPE for Android testing, we modify the sampling procedure: Rather
than sampling a complete tree from a probabilistic prototype tree (PPT), we
sample only sequences from the root node of an AST down to a leaf node.
This path represents a sequence of states s1, s2, . . . , sn connected by actions
a1, a2, . . . , an−1, constituting a single test. The sequence is constructed dynam-
ically since the outcome after applying an action ai cannot be predetermined.
Thus, iterative model updates are necessary, maintaining the current position
nm = (sm, dm) ∈ N . When selecting a new action, we probabilistically sample an
action am from the distribution dm of the current state sm. Upon executing am,
we either arrive at a known state sk, corresponding to an existing node nk, or
we encounter a new state. In the former scenario, we simply update the current
position to nm = nk. In the latter, we create a new node n = (s, d), initialising
the probability distribution d for available actions in state s and updating the
current position to nm = n. The initial action probabilities are set based on
Stoat’s heuristics [19]. Subsequently, we verify whether the last action led to
a crash or transitioned to a state outside the app. If so, the test is returned;
otherwise, the loop continues until a predefined number of actions is reached.

3.3 Probability Updates

After a complete population has been sampled, the probabilistic model is
updated as outlined in Algorithm 2. First, the best test case from the current
population is selected (line 1). Then, this test becomes the elite if it is better
than the current one, i.e., the globally best test seen so far (line 2–4). Next, elitist
learning is performed in a loop with a certain probability (line 5–7), followed by
generation-based learning (line 8) and a possible mutation step (line 9–11).

Both elitist and generation-based learning invoke the same procedure but
with a different argument. The objective here is to adjust the action probabilities
such that the elite or current best test is likely redrawn. We start by mapping
the action sequence of the test to the corresponding path in the AST. Then, we
split this path into two sub paths by determining the point where an action or
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Algorithm 2. PIPE model update
1: currentBest ← testWithHighestF itness(population)
2: if fitness(currentBest) < fitness(elite) then
3: elite ← currentBest
4: end if
5: while random() < Pel do
6: adaptTreeTowards(elite)
7: end while
8: adaptTreeTowards(currentBest)
9: if random() < Pmutate then

10: treeMutation(currentBest)
11: end if

any subsequent action of the test no longer increases the fitness. We denote the
former sequence as the path of good nodes, while the latter sequence refers to
the path of bad nodes, respectively. Then, we start rewarding the actions of the
test that are associated with the good nodes. We determine the current path
probability of the good nodes by multiplying the individual probabilities along
that path. After that, we compute a new target probability for this path based
on the current one as described by the following formula:

betterProb(currentProb,fitness) =

currentProb+ (1 − currentProb) ∗ lr ∗ ε + fitnesselite
ε + fitness

The constant lr denotes the positive learning rate and controls by how much the
current probability should be increased depending on the fitness of the elite test
seen so far and the current test. We continually iterate over the good nodes and
increment the probability of the corresponding test’s action as follows:

newProb(probBefore) = probBefore+ clr ∗ lr ∗ (1 − probBefore)
The new probability is derived from the previous probability, the positive learn-
ing rate lr and a constant clr. After a complete traversal over the good nodes,
the path probability is recomputed. If the target probability is reached, the
rewarding procedure stops, otherwise a further traversal over the good nodes is
performed. Similarly, a new target probability is computed over the path of bad
nodes as shown by the following formula:
worseProb(currentProb,fitness) =

currentProb − currentProb ∗ nlr ∗ ε + fitness
ε + fitnesselite

The constant nlr denotes the negative learning rate and controls by how much
the current probability should be decreased. Then, the probabilities of the test’s
actions associated with the bad nodes are decreased continually as follows:

newProb(probBefore) = probBefore − clr ∗ nlr ∗ probBefore
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Since we modified the probabilities of certain actions along the path of good and
bad nodes, we need to normalise the probabilities to ensure a valid probability
distribution at each node [17].

Finally, with a probability of Pmutate, PIPE applies a mutation step (line
9–11) that encourages exploration around the best solution [17]. It traverses the
tree along the nodes of the current best test case and adapts the probabilities of
available actions with a likelihood of Pmutate√

|test| according to the following formula:

newProb(probBefore) = probBefore+ mr ∗ (1 − probBefore)
Here, mr denotes the mutation rate and controls by how much the probability
should be increased. Decreasing the action probability at this stage would have a
contradicting effect, since the likelihood of selecting a different action in an early
state would possibly lead to a completely different test. Increasing the probability
shifts this effect towards the end, thus leading to a test that is similar but diverse.

3.4 Integrating PIPE and MIO

In order to integrate the PIPE model with the MIO algorithm (cf. Algorithm1),
we need to replace the archive (line 1) with an instance of the PIPE model for
each objective. When MIO would originally sample a test from the archive and
mutate it (line 8–9), it now samples a test from the probabilistic model associated
with the lowest sampling counter. If multiple models share an identical value, a
random selection is made. The counter is increased afterwards and reset to zero in
case the test improved fitness [3]. This promotes the selection of a model that has
not been considered recently but at the same time is likely coverable according to
the associated objective function. Instead of updating the archive (line 3 & 13),
we evaluate the fitness of the sampled test with respect to each objective and
update the probabilistic models separately (cf. Algorithm 2). Similar to MIO,
the parameters that control the balance between exploration and exploitation
(line 15) are updated after each generation, but only with respect to Pr, since
MIOEDA does not perform mutation on sampled tests.

4 Evaluation

We aim to answer the following research question:
RQ: How does MIOEDA compare to random exploration and the state-of-the-
art search-based approaches MIO and Stoat in terms of coverage?

4.1 Implementation

We implemented the proposed MIOEDA algorithm in the open source Android
test generator MATE [7]. All experiments were conducted on a compute cluster,
where each node is equipped with two Intel Xeon E5-2620v4 CPUs (16 cores)
with 2.10GHz and 256GB of RAM, and runs Debian GNU/Linux 11 with Java
11. We limited executions of MATE to four cores and 60GB of RAM, where
the emulator (Pixel XL) runs a x86 image with API level 25 (Android 7.1.1) and
is limited to 4GB of RAM with a heap size of 576MB.
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4.2 Parameter Tuning

To determine appropriate values for the core parameters of MIOEDA we per-
formed a tuning study on a dataset consisting of 10 randomly sampled F-Droid
apps. We evaluated each parameter configuration ten times each lasting 1h to
compensate effects caused by random noise. The tested parameters together
with their possible values and the finally best value per parameter are listed in
Table 1. The possible values were chosen around the default value (highlighted in
bold) originating either from the introductory paper of the MIO [3] or PIPE [17]
algorithm, respectively, as well as based on preliminary results. Since the time
required to perform a complete grid search comprising all parameters was not fea-
sible, we first tested each parameter independently. Then, we further evaluated
configurations where a combination of parameters likely has a coupling effect,
e.g., the two MIO parameters Pr and F . In total, we tested 33 parameter con-
figurations. To determine whether one configuration is better than one or more
other configurations, we applied the following tournament ranking: For each pair
of configurations (c1, c2) we compare the two configurations for each of the apps
in terms of activity and branch coverage using a Wilcoxon-Mann-Whitney U test
with a 95% confidence level. If a statistical difference is observed in any coverage
metric, we use the Vargha-Delaney Â12 effect size [20] to determine which of the
two configurations is better, and the score for this configuration and the partic-
ular coverage metric is increased by one. At the end, the configuration with the
highest combined score (sum) is the overall best configuration.

Table 1. The fine-tuned parameters used in the MIOEDA algorithm; default values
highlighted in bold.

Parameter Possible Values Best Value

Probability random sampling Pr 0.0/0.2/0.5/0.8 0.0
Focused search start F 0.2/0.5/0.8 0.5
Learning rate lr 0.01/0.05/0.2/0.5 0.2
Negative learning rate nlr 0.01/0.05/0.2/0.5 0.2
Elitist learning probability elp 0.0/0.1/0.3/0.7 0.3
Mutation probability mp 0.0/0.2/0.4/1.0 0.4
Mutation rate mr 0.2/0.4/1.0 0.4

We performed the same tuning for the four core parameters of the MIO
algorithm. From the 19 configurations we tested the configuration (Pr = 0.0,
F = 0.8, n = 10, m = 5) yielded the best results. We refer the interested reader
to the replication package1 that contains a detailed description of the tested
parameter configurations including their individual tournament ranking scores.

1 https://doi.org/10.6084/m9.figshare.25556967.

https://doi.org/10.6084/m9.figshare.25556967
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4.3 Study Subjects

We randomly sampled a data set consisting of 100 apps from F-Droid2. During
sampling we excluded apps that match one of the following criteria: (i) The app
represents a game; (ii) the APK is not suitable for the x86 architecture or API
level 25 to allow running all apps on the same emulator; (iii) the APK could not
be re-built after being instrumented; (iv) the app crashed/behaved unexpected
after being re-signed; (v) MATE has troubles to interact with the app; (vi) the
app appeared already in the tuning dataset.

4.4 Experiment Procedure

We compare MIOEDA with MIO and a baseline random exploration strategy
implemented in MATE as well as the Stoat tool using the 100 study subjects.
We repeated each 3h run lasting 15 times to reduce random influences and
recorded activity as well as branch coverage. To determine whether one algorithm
performs better than the other, we use the Wilcoxon-Mann-Whitney U test and
the Vargha-Delaney Â12 effect size [20] metric. We configured Stoat to use
60min for model construction (phase 1) and 120min for stochastic sampling
(phase 2) [19]. MIOEDA and MIO were both configured to optimise towards
branches with the commonly-used approach level and branch distance fitness
function [3]; the remaining parameters were chosen based on the results of the
tuning study. MIO was further configured to use the default mutation operator
of MATE [18], where essentially a random cut point is chosen from the test case
action sequence and the actions from the cut point onwards are replaced with
arbitrary actions applicable in the respective state.

4.5 Threats to Validity

Threats to external validity may arise from our sample of subject apps, and
results may not generalise beyond the tested apps. To counteract selection bias,
we picked the 100 apps for the empirical study randomly. There may also be some
implicit bias, e.g., the apps on F-Droid might be simpler than those on Google
PlayStore. We also stuck to one specific emulator configuration and API level,
but results may differ on other versions. Threats to internal validity may arise
from bugs in MATE or our analysis scripts. To mitigate this risk, we manually
reviewed the results, and tested and reviewed all code. To reduce the risk of
favouring one algorithm over the other, we used the same default parameters
wherever applicable, e.g., the maximum number of actions per test case was
fixed to 50 actions. In addition, MIOEDA, MIO and the random exploration
strategy were all implemented in the same test generator, thus lowering the risk
of favouring one tool’s implementation. To make coverage results comparable,
we instrumented all apps with the same coverage tool and adapted Stoat to
use the same coverage mechanism than MATE, as done previously [6]. Threats

2 https://f-droid.org/.

https://f-droid.org/
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to construct validity may result from our choice of metrics, in particular activity
and branch coverage. However, these are standard metrics in Android testing
and represent a reasonable combination of fine and coarse-grained metrics.

4.6 Results

The coverage distributions for the four algorithms are illustrated in Fig. 2,
whereas the left plot (Fig. 2a) refers to the activity coverage and the right
plot (Fig. 2b) to the branch coverage, respectively. Concerning the medians,
MIOEDA achieves the highest values with 76.41% (activity coverage) and
33.33% (branch coverage), closely followed by Random with 76.28% and 33.19%
as well as MIO with 75.59% and 32.86%, while Stoat follows with some larger
gap at 73.03% and 27.98%, respectively. Table 2 summarises the pairwise com-
parisons where there are statistically significant differences. To determine which
configuration is significantly better, the Vargha-Delaney Â12 effect size was used.
For instance, MIOEDA outperforms Stoat with respect to activity coverage
in 24 apps and 46 regarding branch coverage. Conversely, Stoat is significantly
better than MIOEDA in 31 cases concerning activity coverage and in 27 cases
with respect to branch coverage. Generally, MIOEDA is better than any other
algorithm concerning branch coverage.

Fig. 2. Coverage between the different algorithms.

Table 2. Pairwise comparison of statistical significances with respect to activity and
branch coverage. E.g., MIOEDA achieved significantly higher branch coverage in 46
apps than Stoat, and in 27 cases vice versa.

Activity Coverage Branch Coverage
MIOEDA MIO Random Stoat MIOEDA MIO Random Stoat

MIOEDA - 5 1 24 - 26 15 46
MIO 11 - 1 26 9 - 2 46
Random 10 2 - 27 11 13 - 45
Stoat 31 26 26 - 27 29 29 -
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Fig. 3. Coverage over time.

Although it is common to see only small coverage differences between differ-
ent algorithms in the Android testing domain [4,5,18], it is interesting but not
surprising to note that Random performs almost on par with MIOEDA. With
respect to activity coverage, Random even exhibits the highest mean over time
among all algorithms (cf. Fig. 3a). This can be partially attributed to the fact
that MIOEDA focuses towards covering branches, in particular branches that
might reside within already covered activities, while Random by nature follows
a completely undirected exploration. Figure 3b indeed shows that MIOEDA is
ahead of Random concerning branch coverage over time, thus the choice of the
algorithm depends on what coverage objective is more favourable in the given
context. A different explanation why Random is almost on par with MIOEDA
might be the costly fitness evaluations [4], which hamper the performance of
MIOEDA. In fact, MIOEDA has to evaluate the fitness after every single
action with respect to each branch and this overhead can be observed when
inspecting the total number of produced tests: On average, Random executed
22 additional tests in comparison to MIOEDA (144 vs. 122), which corresponds
to an increase of more than 18%. This rather low number of tests produced
within a time frame of 3 h in comparison to other domains might further inhibit
MIOEDA’s full power. However, additional experiments with a search budget
of 6 h showed the same trend, thus indicating this is likely of less influence. One
might also conjecture that Random can perform extremely well on simple apps
and that MIOEDA should outperform Random on more complex apps. We
grouped the 100 apps based on its complexity, i.e., both the number of activities
and branches, and plotted the coverage for each group and algorithm. However,
we could not observe any clear trends that would confirm this assumption.

Comparing MIOEDA with MIO shows that MIO is slightly ahead regard-
ing activity coverage over time, while MIOEDA performs better with respect to
branch coverage. The cut point mutation employed by MIO might be respon-
sible for the activity coverage variance, since actions are chosen randomly from
the cut point onwards, thus strengthening exploration. Conversely, the higher
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branch coverage for MIOEDA can be attributed to the usage of a probabilistic
model instead of variation operators by MIOEDA, since by construction the
core algorithm is the same otherwise. An explanation why MIOEDA did not
exhibit an even stronger performance in contrast to MIO could again be the
lower number of produced tests (122 vs. 136). Although both algorithms need
to evaluate the fitness for each objective, our implementation of MIOEDA does
this repeatedly on the same execution trace when trying to distinguish good
and bad nodes (cf. Subsect. 3.3). Overall, however, this nevertheless confirms
the EDA as a valid alternative to classical variation operators.

We compare against Stoat since it implements an algorithm that is akin
to EDAs. Here, MIOEDA is substantially better regarding both coverage crite-
ria. The reasons can be twofold: First, MIOEDA constructs and leverages the
probabilistic model from the early beginning on, while Stoat starts sampling
from the probabilistic model at a later stage. This can be well observed from
the coverage over time plots (cf. Fig. 3); the saddle points around 60min refer
to the moment where Stoat switches over from the model construction phase
to the stochastic model sampling phase. From this point onwards, Stoat gets
closer, indicating that sampling from a probabilistic model can be beneficial.
The second potential reason can be the fact that MIOEDA is a many-objective
algorithm, while Stoat optimises towards a linear combination of coverage and
test diversity. Previous studies [3,14,15] emphasise that MOAs are superior to
approaches combining objectives into a single aggregated value, and our results
seem to confirm this also in the domain of Android testing.

Summary (RQ): Our initial investigation suggests that MIOEDA is a
viable alternative for Android test generation, and performs best at optimising
tests for fine-grained coverage criteria like branch coverage.

5 Related Work

The sheer number of coverage objectives and the costly test execution that
would be associated with targeting objectives sequentially, led to the introduc-
tion of many-objective search algorithms like MOSA [14], DynaMOSA [15] and
MIO [3]. While MOSA considers all branches of the program under test as
objectives simultaneously, DynaMOSA dynamically selects the target branches
based on the control dependencies among those targets. MIO was proposed
based on the observation that it is difficult to cover large numbers of objectives
within a limited search budget. MIOEDA approach is built on top of MIO,
and mainly replaces the traditional archive with a probabilistic model origi-
nating from EDAs. Our experiments indicate that MIOEDA performs slightly
better than MIO.

There are some approaches using EDAs to generate tests: Almandoz proposed
in his dissertation [1] an EDA for the generation of test inputs. Similar to our
approach, a control flow graph is used to select branches as possible candidates,
while Wei et al. [21] leverage a combination of a Markov chain usage model
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and an EDA for the test data generation in the context of mutation testing. In
contrast, Sagarna et al. [16] suggest an EDA for the testing of object-oriented
software. In contrast, we address test generation at the system level. In this
regard, Stoat [19] is related as it uses a probabilistic model in a later phase of the
algorithm to sample test suites. Our approach utilises similar heuristics to assign
the initial action probabilities, but in contrast to Stoat, MIOEDA constructs a
probabilistic model from the early beginning on, which is iteratively refined with
the information of sampled tests. Moreover, our approach is capable of optimising
the search towards multiple objectives at once, while the search of Stoat is
driven by a linear combination of coverage and test diversity. The results of our
experiments indicate that MIOEDA outperforms Stoat, in particular in the
early phase where Stoat does not yet use a probabilistic model.

6 Conclusions

Classical genetic algorithms require crossover and mutation operators to create
new but diverse chromosomes. However, in the Android testing domain the cre-
ation of such variation operators can be difficult, since the individual actions
that form a test are most often state-dependent and consequently cannot be
arbitrarily re-arranged without potentially leading to non-executable tests. In
this paper, we therefore proposed the MIOEDA search-based many-objective
algorithm that requires neither a crossover nor a mutation operator. Instead, our
approach builds upon an estimation of distribution algorithm (EDA) that sam-
ples new chromosomes from a probabilistic model, which is iteratively refined. In
addition, to be able to handle multiple objectives within a limited search budget,
we integrate the state-of-the-art many objective independent (MIO) algorithm.

Experiments with our prototype on a set of 100 F-Droid apps demonstrate
that MIOEDA can compete with state-of-the-art search-based algorithms. In
particular, MIOEDA achieves a median activity and branch coverage of 76.41%
and 33.33%, respectively, while Random closely follows with 76.28% and 33.19%,
which is only slightly ahead of MIO with 75.59% and 32.86%, while Stoat
follows with a larger gap at 73.03% and 27.98%, respectively.

Although the results indicate that MIOEDA can be used to effectively test
Android apps for coverage, there is still room for improvements. The fitness
evaluations can be quite time-consuming since the fitness has to be recorded
after each action in order to differentiate between good and bad actions. One
could seek for a highly-parallelised evaluation. Another performance aspect is
the sequential probabilistic model update procedure. In future work this could
be replaced with a parallelised solution once there is enough available memory
to store a dedicated model for each objective. In fact, we had to find for the
prototype implementation a reasonable trade-off between memory and speed,
which led among other things to the exclusion of intent actions due to the low-
memory constraints on Android devices. However, previous studies [6] showed
that intents can be an effective addition for testing.
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To enable the replication of our results, we provide a replication package con-
taining the study subjects, the algorithm implementation in MATE and the raw
results at the following address https://doi.org/10.6084/m9.figshare.25556967.
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Abstract. Code refactoring is a critical task for improving software
quality, but it is traditionally a manual, time-consuming process. This
paper demonstrates an approach to automate project-level code refactor-
ing using Large Language Models (LLMs). The key idea is to iteratively
identify methods with high cyclomatic complexity, and then use LLMs to
generate refactored implementations that reduce complexity. Our evalu-
ation using 17 open-source projects shows that the proposed automated
refactoring can reduce average cyclomatic complexity by up to 10.4%
within 20 iterations. These results suggest that automated project-level
code refactoring is feasible using LLMs with tailored prompts.

Keywords: Code Refactoring · Large Language Model · Cyclomatic
Complexity

1 Introduction

Code refactoring is the process of modifying a software system’s internal struc-
ture without changing its external behavior [1]. Traditionally, code refactoring
tasks are performed manually by developers based on their experience and indus-
try best practices [2], which can make large-scale refactoring a time-consuming
process that takes weeks to months to complete.

Recently, there has been growing interest in applying Large Language Models
(LLMs) to various Software Engineering tasks, such as code generation, test
generation, and automated debugging [3]. Prior work [4,5] has noted that LLMs
can be effectively combined with traditional search-based software engineering
techniques because this combination allows LLMs to provide more powerful and
tailored code mutations, while the generate-and-validate approach helps prevent
LLMs from generating unreliable or hallucinated outputs. Code refactoring is
particularly well-suited for leveraging LLMs, as the assurance criteria can be
fully automated using a regression test oracle [4]. However, existing LLM-based
refactoring work has relied only on existing tests to check the correctness of
refactoring patches, without the use of such regression oracles [6]. Additionally,
this study has evaluated performance using only introductory programs, rather
than real-world software projects.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Fig. 1. Overview

This paper demonstrates the use of LLMs to perform iterative project-
level code refactoring with an objective of reducing the Cyclomatic Complexity
(CC) [7], the number of linearly independent paths within the source code. The
approach first identifies the methods with the highest CC and then performs
refactoring on them. Once an improved version of the method implementation is
found, it is applied to the codebase, and the approach subsequently attempts to
refactor the next high-complexity method. To prevent the existing functionality
from breaking during the refactoring, we use automated generated regression
tests to filter out incorrect patches and best assure that the refactored code
maintains the original behavior [4]. To evaluate our approach, we use 17 open-
source projects from the Defects4J benchmark [8]. The results demonstrate that
our method can reduce the average CC of the programs by up to 10.4% within
20 iterations. We observe that LLMs sometimes significantly reduce the CC by
splitting a complex method into multiple simple methods. Overall, these find-
ings suggest the viability of LLM-based automated refactoring for large-scale
software projects.

2 Methodology

Our methodology for iteratively reducing the code complexity of a target pro-
gram is illustrated in Fig. 1. The process begins by identifying the method with
the highest CC in the project. Subsequently, the LLM is requested to refactor
this selected method (Sect. 2.1). The refactored code passes through a series of
filters. To ensure that the refactoring does not break the existing functional-
ity of the original code, the plausibility of the refactored code is verified using
two types of regression tests: developer-written tests and automatically gener-
ated tests (Sect. 2.2). If the LLM has indeed improved the code quality, the
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refactored code is applied to the project (Sect. 2.3). This iterative process is
repeated, progressively enhancing the overall code quality of the project.

2.1 Extract and Refactoring Target Method

We use the Lizard library1 to measure the CC of all methods within the source
files of the project. After identifying the method with the highest CC, we retrieve
the source code of that particular method. The retrieved method implementation
is then embedded into the prompt ( 1 in Fig. 1) which is provided as input to
the LLM. The prompt instructs the LLM to improve the readability and main-
tainability of the method implementation, while ensuring that the refactored
method remains semantically equivalent to the original one.

2.2 Checking Plausibility

After the LLM generates the refactoring patch, we verify the plausibility of the
refactored method implementation. This involves checking whether the program
is still compilable and whether it successfully passes both the developer-written
test suite and the automatically generated regression tests. Note that the regres-
sion tests were created with respect to the original program before any refactor-
ing was applied. If the refactored method is implausible, we request the LLM to
rectify the issues. In case of a compilation failure, the prompt supplies the com-
pilation error message to the LLM ( 2 in Fig. 1). If the compilation succeeded
but the tests did not pass, the prompt provides both a stack trace and details of
the failing tests, in addition to the error message ( 3 in Fig. 1). After presenting
this error information, the prompt requires the LLM to analyze the root cause of
the issue. Subsequently, the prompt requests the LLM to fix the method, i.e., re-
generate the refactoring patch. If the fixed method remains implausible, meaning
it still fails the checks, we exclude that method from the improvement targets
and proceed to the next iteration without applying the refactored method in the
project.

2.3 Assessing Improvement

If a plausible patch is found, we measure the CC of the refactored method
and compare it to the CC of the original method. If the LLM has split the
original method into multiple methods, we compare the CC of the method with
the highest complexity. If the CC is reduced, the refactored method is then
applied to the target project, and we move forward with the next iteration. This
iterative process allows the project to be continuously improved. If the CC of the
refactored method does not decrease, i.e., there is no improvement in complexity,
we request the LLM to identify a part of the code that can be further modularized
( 4 in Fig. 1). Subsequently, the LLM is tasked with enhancing the quality of
the code based on its own analysis and response. If the modified method is
1 https://github.com/terryyin/lizard.

https://github.com/terryyin/lizard
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Table 1. Refactoring results: the percentage reduction in the average CC, the percent-
age increase in the number of functions, and the percentage reduction in the average
number of lines of code. The maximum values across the five attempts are presented.

Project Avg. CC # Func Avg. nLoC Project Avg. CC # Func Avg. nLoC

Reduction Increase Reduction Reduction Increase Reduction

Chart 0.27% 0.10% 0.74% Cli 4.94% 5.70% 4.67%

Closure 0.35% 0.24% 0.21% Codec 2.37% 4.41% 2.94%

Collections 0.06% 0.08% 0.06% Compress 1.15% 0.32% 0.96%

Csv 10.40% 17.86% 10.60% Gson 2.95% 3.32% 2.46%

JacksonCore 0.38% 0.54% 0.41% JacksonDatabind 0.10% 0.11% 0.11%

JacksonXml 2.31% 3.10% 2.79% Jsoup 0.88% 1.44% 1.03%

JxPath 0.79% 0.58% 0.99% Lang 0.80% 0.67% 1.22%

Math 0.01% 0.02% 0.01% Mockito 0.78% 0.97% 0.53%

Time 0.84% 0.42% 0.35%

still not plausible or fails to improve the complexity, we exclude that method
from future iterations and proceed to the next iteration without applying the
refactored method in the project.

3 Experimental Setup

We evaluate our LLM-based refactoring pipeline using the 17 real-world Java
projects from Defects4J v2.0.0 [8]. As multiple snapshots of each project are
available in the benchmark, we utilize the latest version for every project. For our
experiment, we used the gpt-3.5-turbo-0125. Due to the stochastic nature of
the LLM querying process, we run our pipeline five times for each project, with
each execution comprising 20 iterations of refactoring. To generate regression
tests for the method in focus at each iteration, we make use of the gen tests
script of Defects4J. In particular, EvoSuite [9] is utilized to generate tests for
Java classes that contain the target method, with an allocated time budget of
180 s. If the generated regression tests lead to failures when run against the
program, we eliminate those test cases and initiate the test generation process
again, allowing for a maximum of five attempts. If failures persist beyond five
attempts, it is assumed that the target method (or class) contains elements of
non-determinism, leading us to halt further attempts to improve the method.

4 Results

Refactoring Results: We examine the extent to which the average CC of
the entire project decreases as the iteration progresses. Figure 2 illustrates the
change in average CC across projects over successive iterations. In every project,
there is at least one instance where the average CC decreases. On average, our
method reduces the average CC of the project by 1.2%. Table 1 displays more
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Fig. 2. Change in average CC over 20 iterations

detailed refactoring results after the 20 iterations. The highest reduction rate
of average CC is 10.4% for Csv-16. During the refactoring process, there are
instances where the target method is split into multiple methods, resulting in
the number of functions in the project increasing by 1.5% on average across all
refactoring attempts. Notably, in Csv-16, where the average CC decreased the
most, the number of functions increased by 17.9%. As the method is separated,
the average length of the method is shortened: the average number of Lines of
Code without comments (nLoC) is reduced by 1.3% on average. The examples
of LLM-generated refactoring patches are available online at https://figshare.
com/s/6e7d9f69a96974c110fb.
Detailed Statistics of the LLM-Generated Code: During our experiment,
the LLM is requested to refactor the method a total of 1,700 times across all
projects. We found that 45.5% of the refactoring attempts initially generate

https://figshare.com/s/6e7d9f69a96974c110fb
https://figshare.com/s/6e7d9f69a96974c110fb
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non-plausible methods. Among them, 14.0% of the non-plausibility can only be
discovered through automated regression tests. The plausibility fixing process
leads to 33.7% of the initially non-plausible methods becoming plausible. After
this fixing process, 69.8% of all attempts produce plausible methods. However,
among these, 81.7% show no improvement. Further modularization process leads
to improvement in 30.9% of these initially non-improved methods.

5 Conclusion and Future Work

In this study, we explore the potential of using LLMs to enhance the quality
of program source code, specifically aiming to lower CC. We discovered that
integrating LLMs with our iterative search methodology and tailored prompts
successfully decreases the project’s average CC and enhances its modularity,
all while preserving its original functionality, which is confirmed through both
developer-written and automated regression testing. However, manual verifica-
tion is still necessary to ensure that the code remains semantically identical.
Furthermore, our current pipeline has been limited to the sequential refactoring
of individual methods. Moving forward, we aim to develop a more structural
refactoring approach using LLMs, such as the detection and modularization
of recurring code patterns across different methods as well as operations that
involve multiple methods. We also plan to assess the effectiveness of LLM-based
refactoring on other non-functional quality metrics, such as execution time and
memory usage. Finally, we will investigate whether LLMs can guide more qual-
itative refactoring goals, instead of simply following quantitative metrics [10].
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Abstract. Quantum computing’s potential for exponential speedups
over classical computing has recently sparked considerable interest. How-
ever, quantum noise presents a significant obstacle to realizing this poten-
tial, compromising computational reliability. Accurate estimation and
mitigation of noise are crucial for achieving fault-tolerant quantum com-
putation. While current efforts focus on developing noise models tailored
to specific quantum computers, these models often fail to fully capture
the complexity of real quantum noise. To this end, we propose an app-
roach that uses genetic programming (GP) to develop expression-based
noise models for quantum computers. We represent the quantum noise
model as a computational expression, with each function corresponding
to a specific aspect of the noise behavior. By function nesting, we cre-
ate a chain of operations that collectively capture the intricate nature
of quantum noise. Through GP, we explore the search space of possible
noise model expressions, gradually improving the quality of the solution.
We evaluated the approach on five artificial noise models of varying com-
plexity and a real quantum computer. Results show that our approach
achieved an error difference of less than 2% in approximating artificial
noise models and 15% for a real quantum computer.

Keywords: quantum noise · quantum computing · genetic
programming

1 Introduction

In recent years, Quantum Computing (QC) has gained significant attention due
to its potential speed advantage over classical computing in solving specific prob-
lem classes more efficiently [1]. However, one of the major hurdles to achieving
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quantum advantage is quantum noise, which adversely affects the computation of
quantum computers, leading to undesired behaviors. Estimating noise in quan-
tum computers has become crucial, as we are now testing novel quantum error
correction and quantum error mitigation methods on current noisy intermediate-
scale quantum (NISQ) devices [8]. Current efforts in noise estimation focus on
identifying noise models that accurately represent the noise errors present in cur-
rent NISQ computers [5,6]. However, existing noise models are simple approxi-
mations of real quantum noise [6]. A more detailed noise model that not only rep-
resents the noise errors in a quantum computer but also depicts the relationship
between different noise errors, qubits, and gate operations would be immensely
beneficial. Such a model would greatly enhance the precision of quantum error
correction and mitigation techniques. Studies have shown that knowing a more
detailed noise model for each qubit and gate operation for a particular quantum
computer can significantly enhance the accuracy of quantum error mitigation
methods [11,13].

In NISQ computers, noise has various forms, e.g., depolarizing, amplitude
dampening, and phase dampening noise [4]. Each qubit and gate operation may
experience multiple noise errors, which vary for different qubits and gate oper-
ations. In this paper, we propose an approach that uses genetic programming
(GP) to create expression-based noise models for specific NISQ computers. We
represent the quantum noise model as a computational expression consisting of
a chain of function calls. Each function adds a specific noise error to particular
qubits and gate operations. By nesting these functions within a computational
expression, we capture the intricate relationships among various noise errors,
qubits, and gate operations for specific quantum computer configurations. The
GP process begins with an initial random population of candidate noise model
expressions. Through the proposed fitness function and standard evolutionary
operators, new candidates are evaluated and generated. This iterative process
explores the search space of potential noise model expressions, gradually improv-
ing the quality of solutions until satisfactory noise models are obtained. Impor-
tantly, by representing noise models as computational expressions, their complex
mathematical representation is abstracted, enhancing human comprehension. We
evaluate our approach by approximating five artificially created noise models
with varying strengths and approximating the noise of one real NISQ computer,
IBM-Kyoto. Our approach approximated artificial noise models with less than
a 2% difference across all models. Moreover, for IBM-Kyoto, our method out-
performed the baseline, with a 15% difference in the noise model approximation
compared to 40% for the baseline. In summary, our contributions are (1) the
application of GP for approximating quantum noise and creating a more inter-
pretable noise model; (2) an empirical evaluation with five artificial noise models
and evaluating the applicability on a real quantum computer.
Related Work. Several efforts have been made to create noise models for NISQ
computers. For example, Harper et al. [5] proposed a noise estimation method
for quantifying noise in quantum systems and creating correlation matrices that
describe the relationship of errors with different qubits. Harper et al. [6] pro-
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posed an algorithm for creating a noise model of sparse Pauli noise errors for
Clifford quantum circuits. Moreover, Georgopoulos et al. [4] proposed the use of
noise estimation circuits to model depolarizing noise error for a given quantum
circuit, and Wise et al. [12] used deep learning to transform the output of a quan-
tum circuit to a noisy output, resulting in a neural network-based noise model.
However, the major limitation of all these methods is that they are difficult to
analyze due to the closed nature of machine learning models and quantum states
and, thus, cannot be directly utilized by quantum error mitigation methods.

2 Approach

The most common errors due to quantum noise are depolarizing, amplitude-
dampening, and phase-dampening errors [4]. Depolarizing Error arises from
the interaction of a quantum computer with its environment and describes the
probabilistic process by which the quantum state of a qubit undergoes random
rotations or flips, leading to computation errors [7]. Formally, for one qubit, it
is defined as

D(ρ) = (1− p)ρ +
p

3
(XρX + Y ρY + ZρZ) (1)

where p is the probability of the error, ρ is the density matrix, and X, Y, Z
are the Pauli operations. Different qubits and gate operations can have different
probabilities of the depolarizing error [7]. Amplitude damping error refers
to the loss of energy from a quantum system to its environment, while Phase
damping error refers to the loss of information from a quantum system to its
environment without dissipating energy. Formally, both are represented as

E(ρ) = E0ρE†
0 + E1ρE†

1 (2)

where ρ is the density matrix, E0 and E1 are the Kraus operators. For ampli-
tude damping, E0 is represented by the matrix

[
1 0
0

√
1 − γ

]
, and E1 by

[
0

√
γ

0 0

]
. For

phase damping, E1 is
[
0 0
0

√
γ

]
and E0 is the same as amplitude damping. These

matrices depict the potential outcomes of the damping process. γ is the damping
parameter, which represents the probability of the qubit transitioning from the
excited state to the ground state. Our genetic programming (GP)-based app-
roach uses these three noise errors to create an individual representing a noise
model.
Individual Representation. GP uses an evolutionary algorithm to evolve com-
puter programs, that are represented and stored as syntax trees. These trees
consist of interior nodes representing operations and terminal nodes representing
inputs or parameters for these operations. In GP, operation nodes are denoted
by a tuple (func, arity), where func defines the operation and arity specifies
the number of arguments it can take. The arity of operation nodes in the syn-
tax tree determines the number of child nodes each operation node can have.
Our approach employs a variant called Strongly Typed Genetic Programming
(STGP) [9]. In STGP, operation nodes additionally define the data type of their
arguments and the return type of the operation, represented as (func, arity ,
argType1, . . . , argTypen, retType).
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Fig. 1. An example individual for GP

To construct a noise model for a
quantum computer, we define opera-
tion nodes in STGP corresponding to
common basis gates (such as rx , ry ,
rz , sx , cx ) supported by real quan-
tum computers. Figure 1 illustrates an example individual for STGP. In this
figure, Init is the root node representing the initialization of an empty noise
model. DpRY is an operation node taking two arguments: the qubit index and
the probability p for a depolarizing noise error (see Eq. 1). For instance, DpRY

with arguments qubit1 and 0.3 indicates a depolarizing noise error on qubit 1 and
gate operation ry with a probability of 0.3. The return value of each operation
node, such as (DpRX , DpCX , ApRX), is the qubit number it acted upon. This
enables combining different noise errors on a particular qubit and gate operation
to create a more accurate representation of actual noise. For two-qubit gate oper-
ations like DpCX , it takes two qubit indexes as arguments, where the first index
is the control qubit and the second index is the target qubit. The return value
of two-qubit operation nodes is the index of the target qubit. One advantage of
GP is its ability to convert the entire tree representation into a computational
expression, defining how noise affects different qubits and gate operations. For
instance, the individual in Fig. 1 can be converted into the following computa-
tional expression:

(Init (DpRY qubit1 0.3) (DpCX (ApRX qubit0 0.4) qubit1 0.2))

By utilizing Eqs. 1 and 2, this expression can be translated into the following
noise representation from a qubit perspective:

Q0 = E(ρ)0.3 Q1 = D(ρ)0.3 ⊗ (D(ρ)0.2|Q0)

Fitness Function. Fitness is calculated by averaging the Hellinger distance
between multiple quantum circuits. The Hellinger distance is widely used for
assessing the output of quantum circuits under noise [2]. The fitness function is
1
n

∑n
i=1

1√
2
|√Pi −√

Xi|, where n is the number of circuits used, Pi is the output
of the i-th circuit from the real computer, and Xi is the output of the i-th
circuit under the noise model. We utilize multiple quantum circuits to evaluate
the fitness to avoid optimizing a noise model for a specific quantum circuit.

3 Experiment Design and Result

For our experiment1, we implemented STGP using the DEAP framework [3],
with default settings. By default, DEAP uses a half-and-half policy for initial-
ization, one-point crossover and uniform mutation for genetic variations, and
the tournament selection method for choosing the best individuals2. For the ini-
tialization policy, we set the minimum depth to zero and the maximum depth
1 https://doi.org/10.5281/zenodo.11198788.
2 https://deap.readthedocs.io/en/master/api/tools.html.

https://doi.org/10.5281/zenodo.11198788
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Table 1. Comparison of 10 runs of genetic programming with baseline

Noise Model STGP Random Statistics
Favg Fstd Favg Fstd pvalue Â12

Af1 0.0024 0.0014 0.44 0.0009 0.0002 Large
Af2 0.0196 0.0156 0.38 0.0013 0.0002 Large
Af3 0.0054 0.0021 0.21 0.0013 0.0002 Large
Af4 0.0018 0.0019 0.29 0.0011 0.0002 Large
Af5 0.0007 0.0006 0.20 0.0008 0.0002 Large
IBM-Kyoto 0.148 6.6e−05 0.41 0.0006 0.0002 Large

to two, and for the selection method, we set the tournament size to three. For
quantum program execution and noise model creation, we utilized IBM’s Qiskit
framework.

As benchmarks, we created five random noise models with varying complex-
ity, each composed of combinations of three selected noise errors. We evaluated
our approach on a real quantum computer from IBM (IBM-Kyoto). Fitness was
calculated using three quantum circuits (Amplitude Estimation, Phase Estima-
tion, and Quantum Fourier Transform), computing the average Hellinger dis-
tance value, which ranges from 0 to 1, indicating no difference to maximum
difference, respectively. To assess effectiveness, we compared our approach with
a random baseline across 10 repeated runs. For statistical analysis, we use
the Mann-Whitney test and Vargha Delaney Â12 effect size as recommended
in [10]. Â12 is interpreted according to [10]: an effect size in the range (0.34, 0.44]
and [0.56, 0.64) is considered Small ; in (0.29, 0.34] and [0.64, 0.71) is considered
Medium; in [0, 0.29] and [0.71, 1] is considered Large. STGP ran for 40 genera-
tions with a population size of 300, using default parameter values from DEAP
for all other parameters. For a baseline comparison, we generated 12k random
individuals, aligning with the generation and population size of STGP.

Result. Table 1 presents the results, where the columns Favg and Fstd indicate
the average, and standard deviation of the best individual over 10 repeated runs.
The best average values, highlighted in bold, signify a closer approximation to
zero, indicating a better fit of the noise model. Our approach outperformed the
baseline random method for all five artificial noise models, with statistically
significant improvements indicated by a pvalue of less than 0.05 and a Â12 statis-
tics with Large magnitude. It achieved average fitness values of less than 2%,
with consistently low standard deviation across all models. For the real quan-
tum computer (IBM-Kyoto), our approach outperformed the baseline with an
average fitness of 15% compared to the 40% for baseline. The results demon-
strate our approach’s effectiveness in approximating the noise model based on
program output for both artificial noise model and real quantum computer. This
demonstrates that our approach effectively approximates the noise model of a
real quantum computer using the expression representation of GP.
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Limitations. While our approach effectively approximates the noise model,
there was a notable difference between the results of artificial noise models and
the real quantum computer. This is because our method considers only three
types of noise errors, while real quantum computers may have additional error
types like readout and random unitary errors. To enhance accuracy, we plan to
include these additional error types. Additionally, utilizing only three quantum
circuits for fitness calculation and using the same circuits for experiment evalua-
tion limits generalization. Therefore, adding more circuits could provide a more
comprehensive evaluation of the noise model.

4 Conclusion

We present an approach that uses genetic programming to generate expression-
based noise models tailored for NISQ computers. By representing noise as a chain
of function calls, our approach creates interpretable noise models that capture
different noise errors affecting individual qubits and gate operations of a quantum
computer. Our results demonstrate the effectiveness of our approach, achieving
an approximation error below 2% for artificially generated noise models and 15%
for real quantum computer noise. In the future, we aim to enhance our approach
by incorporating additional noise errors and expanding the range of evaluated
quantum circuits to gauge its effectiveness further.
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Abstract. Quantum programs are hard to develop and test due to their
probabilistic nature and the restricted availability of quantum comput-
ers. Quantum simulators have thus been introduced to help software
developers. There are, however, no formal proofs that these simulators
behave in exactly the way that real quantum hardware does, which could
lead to errors in their implementation. Here we propose to use a search-
based technique, grammar-based fuzzing, to generate syntactically valid
quantum programs, and use differential testing to search for inconsistent
behaviour between selected quantum simulators. We tested our approach
on three simulators: Braket, Quantastica, and Qiskit. Overall, we gen-
erated and ran over 400k testcases, 2,327 of which found new coverage,
and 292 of which caused crashes, hangs or divergent behaviour. Our
analysis revealed 4 classes of bugs, including a bug in the OpenQASM
3 stdgates.inc standard gates library, affecting all the simulators. All
but one of the bugs reported to the developers have been already fixed
by them, while the remaining bug has been acknowledged as a true bug.

Keywords: Differential Testing · Fuzzing · Quantum Simulators

1 Introduction

Quantum computers offer an exciting opportunity to massively speed up exist-
ing computation. However, writing valid quantum programs is non-trivial. By
shifting the paradigm from traditional computing the outputs are no longer
deterministic. It is thus no wonder that testing quantum software is a challeng-
ing task [1]. Furthermore, quantum computers are not widely available, require
specialist knowledge to run and maintain, and suffer with inaccuracy due to
noise.

Quantum simulators have been introduced to ease developers in programming
and validating quantum circuits. Nevertheless, there are no formal guarantees
that the outputs of simulation will be the same on real quantum hardware.
Furthermore, simulators themselves might not be bug-free. In fact, Wang et al. [5]
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generated semantics-preserving gate transformations and showed that in 33 of
730 cases the outputs of simulations diverged. The technique, however, requires
specialist domain knowledge to create these metamorphic relations; we lack the
knowledge to ascertain whether they have already found all of the viable ones.

To aid the development of quantum simulators we propose to use search-
based differential testing to check their validity. In particular, we investigate the
difference in behaviour between different quantum simulators, when given the
same quantum programs, generated by a grammar-based fuzzer. As far as we
know, this is the first time our differential search-based testing app-
roach has been applied to test quantum program simulators.

Our initial results are encouraging. We found 4 classes of bugs, with at least
one in all three quantum program simulation frameworks tested, i.e., Qiskit1,
Braket2 and Quantastica3. All bugs have been confirmed and all but one
already fixed by the developers. Furthermore, our method has generated a
large number of testcases (over 400k) covering a lot of functionality which we
have minimised to a set of 842 testcases that achieve 100% of the coverage
discovered by the fuzzer; this may be useful to the simulator maintainers as a
standalone regression test set, or alternatively our approach could be trivially
adapted to do regression fuzz testing. Moreover, our methodology can aid in
extending existing quantum program benchmarks. To allow further uptake of our
approach we provide the artefact at https://doi.org/10.5281/zenodo.11002154
and the GitHub repo: https://github.com/GloC99/fuzzingQuantumSimulator.

2 Differential Fuzz Testing

Here we propose to perform differential fuzz testing of quantum simulators. We
first take existing quantum programs representing valid circuits. We compile
them into an intermediate representation: the OpenQASM 3 language [2] (herein
referred to as QASM). We feed these programs to a search-based automated test
generation tool to generate more testcases. We chose to use an existing grey-box
fuzzer for this purpose. Grey-box fuzzing is a search-based software testing tech-
nique that generates new testcases by mutating existing ones; coverage feedback
is used to retain any new testcases that exercise new program functionality. In
essence, the mechanism of a grey-box fuzzer can be likened to a genetic algorithm
whose fitness function is the total coverage of the retained set of testcases. We
have extended the fuzzer with a QASM grammar-aware mutator. This way we
generate only syntactically valid programs. Finally, we feed the generated QASM
programs through different quantum simulators, observe crashes or hangs where
they occur, and compare the outputs where they don’t.

In order to evaluate our approach we built tooling based on the AFL++
fuzzer [3] and tested it on 3 quantum simulation frameworks: Qiskit, Braket and
Quantastica. Next, we detail each step of the implementation of our approach.
1 https://github.com/Qiskit/qiskit-aer.
2 https://github.com/amazon-braket/amazon-braket-default-simulator-python.
3 https://github.com/quantastica/quantum-circuit.
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Grammar Mutator. We use Grammar-Mutator4 from AFL++’s set of included
custom mutators. As it takes grammars provided in an unusual JSON format; we
had to manually adapt the ANTLR4 grammar from the OpenQASM 3 specifica-
tion5. Additionally, we found that the specification is very much forward-looking,
and 10 of the 28 statements are not yet implemented in the two simulators
supporting OpenQASM 3. As such, these statements along with certain other
unimplemented features were removed from our grammar in order to increase
the number of valid executable programs we could generate. Grammar-Mutator
works on a context-free grammar, which means that while it generates programs
that will pass the lexing stage, many of these will not successfully parse due to
invalid semantics. To increase the likelihood of successful parsing, and thus exe-
cution, we adjusted the grammar so that the generated program is guaranteed
to begin with the declaration of a quantum register, and will include at least one
gate statement; without these, the Braket simulation framework we use would
throw an exception to indicate that the program has no functionality.

Instrumentation. We chose to use python-afl6 in combination with AFL++,
in order to have easy access to a grammar mutator. As noted in GitHub issue
no. 25 by the author, the instrumentation method used by python-afl incurs
significant runtime overhead. Running the three simulators with example pro-
grams took around 0.3–0.5 s already; with instrumentation this could be up to
2 or more seconds. To mitigate this, we added functionality to python-afl to
allow us to enable and disable instrumentation at points in the fuzzing harness
so as to eliminate the overhead of instrumentation on ‘boring’ functionality. This
allowed us to average approximately 1.1 executions per second – still slow by
fuzzing standards, but several times better than the naive approach.

It is worth noting that the Quantastica quantum-circuit simulator is writ-
ten in JavaScript and hence cannot be invoked directly from the Python fuzzing
harness. We built a Node JS server that is run on localhost, with a single end-
point to receive a QASM program as a string, load it in, execute it and send
the result as a response. The fuzzing harness sends a web request and parses the
response in order to compare with that of the other simulators; as a result, no
coverage feedback is available for this simulator.

Fuzzing Harness. A single fuzzing harness was created that took the Open-
QASM 3 input generated by the fuzzer, and fed it through all three simulators in
the following order: Braket, Qiskit then Quantastica; collecting the state vector
for each. As Quantastica only supports OpenQASM 2 (rather than the Open-
QASM 3 that our generated programs are in), we chose to export the circuit that
we have just generated in Qiskit to OpenQASM 2; this is not an ideal solution
as any parsing errors made by Qiskit will be passed along, but it is the best
option we have short of not testing Quantastica. Chaining the executions in the
way we do means that if a crash occurs in Braket, then the input will not be

4 https://github.com/AFLplusplus/Grammar-Mutator.
5 https://openqasm.com/versions/3.0/grammar/index.html.
6 https://github.com/jwilk/python-afl.
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ran for Qiskit or Quantastica; when triaging the discovered crashes we run the
generated programs on the other simulators to ensure that the same crash does
not occur for them.

Any generated programs that parse and execute successfully on all simula-
tors make it to the final step, which is comparison of the output probability
distributions. For this we used Jensen-Shannon divergence [4], which is a finite
symmetric measure of divergence between two probability distributions. Using
an assertion, we set an arbitrary cap of 0.01 to be allowed when comparing
Braket with Qiskit, and Qiskit with Quantastica; failing to pass this assertion
marks this input as a crash in the fuzzer. We could set such a strict cap on
expected divergence because directly using the state vectors avoids noise and
should be fully deterministic. We did not cap at 0 in order to allow for a small
amount of accumulated floating point errors.

Initial Seeds. To obtain the initial seeds we took the set of 382 benchmarks in
OpenQASM 3 form from the mqtbench7 benchmarks. We minimised them down
to a subset of 22 testcases that covered all edge cases found in the complete
set using py-afl-cmin8. We modified these testcases to minimise the number of
unique variable identifiers and added these to the grammar in order to increase
the probability of generating programs free from undeclared variable usage.

Fuzzing Campaigns. Many short campaigns were run whilst creating and
debugging the pipeline, often these produced large numbers of crashes due to
unhandled exceptions during the parsing phase. We noted down each unique
crash type and decided whether it was handled sufficiently gracefully or not; we
added catches within our fuzzing harness for those exceptions that we believe
were handled gracefully within the quantum library, as our aim was to test the
functionality of the simulators rather than our tools ability to create valid QASM
programs. In some cases we found exceptions during the parsing phase that were
not well handled and could benefit from providing more context to the user. We
report results from our longest run campaign which was performed on a 2023
Macbook Air with M2 processor and 8GB RAM; this ran for 106 h on a single
core.

3 Results

Our longest fuzzing campaign resulted in 407k executions (and thus approxi-
mately as many unique QASM programs), generating a corpus of 2,327 testcases
(from an original 22), 139 saved crashes and 153 saved hangs; note that these are
AFL++ statistics where only inputs that cover new functionality are saved, thus
the resultant testcases significantly increase the diversity of the orignal 22 tests.

We discovered that 4 types of bugs were responsible for all 139 crashes; they
are listed in order of severity in the rest of this paragraph. One bug filed to Qiskit
maintainers ended up being an error in the specification for the OpenQASM 3
7 https://www.cda.cit.tum.de/mqtbench/.
8 https://github.com/jwilk/python-afl/blob/master/py-afl-cmin.
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standard library (stdgates.inc); this directly led to us publicly filing a report in
Braket and privately alerting Quantastica to a potential error in their simulator.
Qiskit’s standard library implementation has now been fixed, and Braket’s sim-
ulator too. Additionally, we reported a significant performance issue in Braket,
which has now been fixed; and a crash in the Quantastica simulator which has
also been fixed. We describe these bugs further:
Braket. In Braket we found that the QASM interpreter made certain assump-
tions about the available attributes of some objects; this resulted in uncaught
exceptions that provided no context about where the error occurred. In most
cases, these were invalid programs and our only concern was that the error mes-
sage was less helpful than others which provided context about which line and
token the interpreter failed on. It is certainly possible to rationally argue that
this is a whole family of bugs (though we do not), and we have witnesses to eight
different crash locations.
<Bug BRAKET1>: In one of these cases the interpreter did not conform to the
OpenQASM 3 specification, and after reporting we are assured that this will be
addressed in a future release.
<Bug BRAKET2>: We filed another bug report whereby simulating relatively sim-
ple quantum circuits of 14 qubits resulted in the Python interpreter being killed
due to running out of memory. This was due to an error in the implementation
of the gphase builtin instruction, and has now been fixed by a maintainer; after
which the simulator could comfortably handle the same circuits with 25 or more
qubits.
Qiskit. For consistency between platforms, we chose to manually expand the
include "stdgates.inc" statement using a simple string replacement with the
file definition from the original OpenQASM 3 specification publication [2]. All
three simulators provide inbuilt definitions for the standard gates, however, as
a direct result of forcing them to have to generate the definitions directly from
QASM we discovered that Qiskit’s output probability distributions diverged from
the other simulators for testcases involving use of the sx gate.
<Bug QISKIT1>: After triaging and discovering that the divergence only
occurred when manually specifying the sx gate definition in QASM (rather than
relying on the built-in definition), we decided to file an issue. The maintainers
narrowed it down to one line: gate sx a { pow(1/2) @ x a; }. According to
the OpenQASM 3 specification, dividing two integer literals should use integer
division resulting in 1/2 resolving to 0; whereas Braket performed float division
resulting in a value of 0.5. Ultimately it was decided that the error was in the
original sx gate definition as provided in the specification and it should instead
have either written the fraction as 1.0/2 (or equivalent) or used 0.5. While
this meant that the stdgates.inc (the equivalent of OpenQASM 3’s standard
library) would need correcting, it also meant that Braket has an implementation
error in applying floating point division where integer division should be used.
Quantastica’s behaviour aligned with Qiskit due to the OpenQASM 2 code being
generated by Qiskit re-exporting the circuit that it had produced – after realising
the divergent behaviour in Braket, we manually constructed a simple testcase to
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check Quantastica and found that it too uses floating point division. We filed an
issue with Braket to alert them to the issue, and privately informed the Quantas-
tica maintainers of the finding, though as the OpenQASM 2 specification is less
rigorous and does not directly specify integer division, we are not treating this as
a bug. The Qiskit maintainers have merged a fix to the stdgates.inc standard
library file, and Braket maintainers have fixed the floating point division error.
Quantastica. <Bug QUANT1>: The Quantastica simulator does some undocu-
mented processing of register identifiers, causing some of our generated testcases
to throw an out-of-heap-memory error. Identifiers that trigger this bug are also
generated by Qiskit when exporting to OpenQASM 2 – this is not a highly
improbable bug to encounter. The online tools quantum-circuit and q-convert
run this JavaScript code in the browser, and attempting to parse code contain-
ing the bad identifiers results in a hang rather than a crash. As this bug could
be used in a denial-of-service attack, we first emailed the library maintainer to
ensure that no server-side applications could be targeted and only filed a publicly
visible issue once we had assurance that all applications were run client-side.

3.1 Effectiveness of the Differential Testing Approach

Our search-based fuzz testing approach revealed multiple crashes and hangs.
We can directly attribute the differential testing approach to the discovery of
<Bug BRAKET2> causing crashes for gphase instructions with 14 qubits, and <Bug
QISKIT1> where floating point division was incorrectly used in place of integer
division. As many of the auto-generated circuits had large numbers of qubits,
many testcases crashed or were killed, so if we were just testing Braket alone
we may not have realised there was an issue. It was only after we spotted that
Qiskit correctly handled one particular testcase that Braket crashed on that
we decided to investigate further and discovered that there was probably an
implementation issue. In the case of the division bug, it was as a direct result
of the Jensen-Shannon divergence bounding assert being failed that this was
detected. Testing any of the simulators on their own could have only discovered
this with an appropriate oracle – which we do not have.

4 Conclusions

We proposed to use search-based differential testing to check validity of quantum
program simulators. In particular, we used grammar-aware fuzzing to generate
valid programs, which were then fed into different quantum simulators. Our
results from over 400k executions show that our approach is useful in finding
real bugs in such software.

Funding. We thank the ERC Advanced Grant no. 741278 and UK EPSRC Grant no.
EP/S022503/1.
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Abstract. Tuning the parameters and prompts for improving AI-based
text-to-image generation has remained a substantial yet unaddressed
challenge. Hence we introduce GreenStableYolo, which improves the
parameters and prompts for Stable Diffusion to both reduce GPU infer-
ence time and increase image generation quality using NSGA-II and Yolo.
Our experiments show that despite a relatively slight trade-off (18%)
in image quality compared to StableYolo (which only considers image
quality), GreenStableYolo achieves a substantial reduction in inference
time (266% less) and a 526% higher hypervolume, thereby advancing the
state-of-the-art for text-to-image generation.

Keywords: SBSE · ANN · GenAI · Text2Image · Stable Diffusion ·
Yolo

1 Introduction

In recent years Generative Artificial Intelligence (GenAI) has emerged as a pow-
erful approach encompassing various techniques that enable machines to generate
new content, such as text [13], images [19], and videos [14]. Particularly, image
generation and text-to-image synthesis have garnered significant attention due
to their potential in bridging the gap between textual descriptions and visual
representations [18]. It enables systems to understand and interpret human lan-
guage and automatically translate it to a visually meaningful way, facilitating
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tasks such as generating accompanying images for books [4], generating product
images for advertising [22], and inspiring artists to create new forms of art [12].

However, achieving optimal performance in image generation tasks involves
fine-tuning various aspects of a GenAI model, such as the number of inference
steps, positive and negative prompts [1,3]. These parameters play a crucial role
in determining the quality and efficiency of the generated images and tuning
these parameters is essential to unlock the full potential of image generation
models [3,15]. At the same time, GenAI model are energy demanding and largely
contribute to the increased CO2 emissions [8,20].

Berger et al. [3] proposed a search-based approach, dubbed StableYolo, to
optimize the image quality of Stable Diffusion by assessing image quality using
Yolo [17]. However, they their approach do not take into account the aspect
of inference time, which is a cornerstone for both ensuring user experience and
minimizing the energy consumption of GenAI models. Especially in real-world
scenarios, where responsiveness and energy efficiency are vital, addressing this
aspect is vital for the widespread adoption of such models [5,11,20,21].

To address this gap, we present GreenStableYolo, a novel approach that
addresses the challenge of optimizing the trade-off between inference time and
image quality using a search-based multi-objective optimization method, namely
Non-dominated Sorting Genetic Algorithm (NSGA-II) [6]. We provide initial
empirical evidence that by using GreenStableYolo Stable Diffusion achieves a
satisfactory equilibrium between inference time and image quality, making it
suitable for real-world applications where both factors play a crucial role.

In a nutshell, the key contributions of this work include:

– The development of a novel system that seeks for an optimal trade-off between
inference time and image quality by optimizing the prompts and parameters
for Stable Diffusion, dubbed GreenStableYolo;

– Empirical evidence on the effectiveness of GreenStableYolo in achieving sig-
nificantly less inference time and higher hypervolume compared to StableY-
olo, thereby advancing the state-of-the-art multi-objective optimization for
text-to-image generation;

– A comprehensive analysis to understand the influence of different parameters
and prompts on both inference time and image quality in Stable Diffusion.

2 Related Work

To improve image generation quality, Berger et al. [3] were the first to propose
the use of a Genetic Algorithm (GA) able to simultaneously tune the prompt
and parameters of Stable Diffusion. Magliani et al. [15] use GA to find the best
diffusion parameters for automated image retrieval from a dataset. While some
research [5,11] has been carried out to optimize inference time, from hardware
design to model architecture, there has been limited work focusing on optimizing
the prompts and parameters. Our work builds upon previous work by considering
both inference time and image quality as optimization objectives.
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3 Methodology

To mitigate the aforementioned challenge, we propose GreenStableYolo, a novel
multi-objective search-based approach that, given a text prompt for image gen-
eration, searches for the optimal parameters that can strike a balance between:
(1) Inference time, which is measured by the GPU time taken for the execution
of the StableDiffusionPipeline; and (2) Image quality, which is determined by
performing object recognition with Yolo, then selecting objects that match the
input prompt, and computing their average probabilities [3].

NSGA-II Optimization Algorithm. To simultaneously enhance image qual-
ity and reduce inference time, we leverage NSGA-II, a well-known and efficient
multi-objective evolutionary algorithm [10,16]. Specifically, NSGA-II works as
follows: (1) Initialize a population with N individuals; (2) Perform crossover
and mutation operations, generating an offspring population denoted as Po; (3)
Reassemble the parent population Pt−1 and Po into a temporary population with
the size of 2N , and formulate individuals into i non-inferior frontier through fast
non-dominating sorting; (4) Select N individuals from the temporary population
to form the next population for the tth iteration, denoted as Pt. (5) Repeat steps
(2)–(4) until the termination condition is met; and (6) The algorithm ends up
and returns the current Pareto-Optimal set.

Selected Parameters. To make a straightforward comparison with StableYolo,
we adopt the same settings as used by Berger et al. [3]. Specifically, the following
parameters and prompts are tuned and searched with NSGA-II: (1) Inference
steps (1 to 100): the AI’s image generation iterations; (2) Guidance scale (1
to 20): the impact of the prompt on image generation; (3) Guidance rescale (0
to 1): rescales the guidance factor to prevent over-fitting; (4) Seed (1 to 512):
randomization seed; (5) Positive prompt : used to describe images and improve
their details, e.g., “photograph”, “color”, and “ultra real” [2]; and (6) Negative
prompt : avoided description during image generation, e.g., “sketch”, “cropped”,
and “low quality” [2].

4 Evaluation

To evaluate our proposal, we address the following research questions (RQs):
➤ RQ1: To what extent can GreenStableYolo improve image quality and infer-
ence time compared with StableYolo?
➤ RQ2: How do parameters/prompts of Stable Diffusion influence the inference
time for image generation?
➤ RQ3: How do parameters/prompts of Stable Diffusion influence the quality
of the generated images?

Experimental Setup. To ensure a fair evaluation of the optimization effective-
ness, we employed the same hyperparameter setup as StableYolo for NSGA-II,
e.g., the population size was set to 25, the number of generations was set to 50,
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and both the mutation rate and crossover rate were set to 0.2. We selected the
weights of 0.001 for image quality and −1000 for inference time based on empir-
ical investigation of different weight combinations. In addition, we used Stable
Diffusion version v2 and Yolo version v8. To assess variability, we evaluated each
model 15 times using different random seeds, focusing solely on the prompt “two
people and a bus” due to time constraints. Any future studies can explore addi-
tional prompts. All experiments were conducted on a virtual machine hosted on
Google Colaboratory, with an NVIDIA Tesla T4 GPU with 16 GB of RAM.

RQ1 Results. Figure 1 presents the performance comparisons between Green-
StableYolo and StableYolo. Specifically, Fig. 1a reveals that GreenStableYolo
achieves an average inference time of 9.4 s with an interquartile range (IQR) of
4.7 s. Conversely, StableYolo exhibits an average inference time of 25.0 s, which
is 1.66 times higher than GreenStableYolo, with an IQR of 9.1 s. That is, Green-
StableYolo generates images much faster.

This improvement in inference time comes at a slight cost to image quality.
As illustrated in Fig. 1b, GreenStableYolo experiences approximately an average
degradation of 0.18 points in image quality. We also compute the hypervolume [9]
for both models for a more comprehensive comparison1. Figure 1c presents the
hypervolume values with the reference point set as (1, 50000), where GreenSta-
bleYolo achieves an average hypervolume of 29074.11, surpassing StableYolo’s
score of 4642.17 by 5.26 times. This substantial difference demonstrates
the clear dominance of GreenStableYolo over StableYolo in this two-
objective optimization problem for text-to-image generation.

Fig. 1. Comparison of GreenStableYolo and StableYolo on 15 independent runs

RQs2–3 Results. To investigate RQs2–3, we followed previous work [7] and
built two Random Forest regression models using scikit-learn. The features
of these models include the number of iteration steps, guidance scale, guidance
rescale, positive prompts, and negative prompts (excluding the random seed).
The target variables are inference time and image quality score, respectively. We

1 Hypervolume is a fundamental metric used in multi-objective optimization problems
that indicates the dominance of a solution in the objective space.
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use the RandomizedSearchCV function from scikit-learn to find the optimal
hyperparameters during model training. The feature_importances_ function
is then used to compute the importance of each parameter and prompt based
on the Mean Decrease Impurity (MDI), a.k.a. as Gini importance. To ensure
reliability, we repeat this process 10 times.

Figures 2a and b present the calculated importance of parameters and
prompts based on the mean decrease in impurity, with respect to inference
time and image quality scores, respectively. As shown in Fig. 2a, the number
of inference steps emerges as a significant factor affecting inference time. This is
expected, as more steps involve more computations, thereby resulting in higher
inference time. Meanwhile, for image quality (Fig. 2b), parameters like guidance
rescale and positive prompts play a relatively more critical role.

Fig. 2. Parameters/prompts importance based on the mean decrease in impurity

These findings confirm the value of our work: increased computational
resources do not necessarily translate to better image quality; instead,
appropriate model parameter settings are more crucial. This highlights
the importance of identifying optimal parameter combinations during model
inference to balance computational efficiency and output quality.

Threats to Validity. The limited exploration of prompts, the randomness in
the optimization process, and the specific configuration for NSGA-II may intro-
duce internal threats. Besides, external threats may include the choice of the
GenAI model, the noise when measuring the inference time, and the evaluation
of image quality based on object recognition using Yolo.

5 Conclusion

In GenAI text-to-image, achieving images of high-quality is often not the only
important aspect to consider, as inference time, which directly impacts user
experience and energy consumption, also plays a critical role. In this work we
introduced GreenStableYolo, the first approach leveraging NSGA-II to strike an
optimal trade-off between these two objectives for Stable Diffusion. Experimental
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comparisons with StableYolo demonstrate that GreenStableYolo achieves signif-
icantly reduced inference time while maintaining a relatively high image quality.
Future research can expand upon our evaluation by incorporating alternative
initial prompts, optimizing different performance metrics such as energy con-
sumption, and broadening to other GenAI systems such as DALL-E, ImageFX,
or Midjourney.
Availability. Repository available at https://github.com/gjz78910/GreenStable
Yolo.
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Abstract. Self-driving cars face significant testing challenges, con-
strained by high costs and limited test environments. This necessitates
innovative approaches to simulation-based testing to improve deployment
and evaluation efficiency. Our study introduces a novel methodology that
leverages dangerous real-world road maps sourced from Google Earth as
the initial seed for generating driving scenarios. In contrast, traditional
approaches use randomly generated seeds/maps to initialize the search
process. We systematically adjust road points by evolving these maps
to induce out-of-bounds (OOB) errors. Our preliminary results demon-
strate a significant improvement in generating failing scenarios, when
using real-world maps as seeds compared to random seeds/maps. Specif-
ically, the evolved real-world maps are more likely to be valid (e.g., not
self-intersecting) and have a higher incidence of OOB failures. This work
opens avenues for further research into optimizing scenario generation
for broader applications in autonomous systems testing.

Keywords: Cyber-Physical Systems · Simulation-based Testing ·
Evolutionary Search

1 Introduction

Driving remains perilously unsafe, evidenced by over one million road fatalities
annually [8], with road injury leading as the cause of death among individuals
aged 5 to 29 in 2019 according to the World Health Organization. Autonomous
vehicles emerge as a potential solution to enhance road safety, with compa-
nies like Waymo, Cruise, and Tesla building and running these vehicles across
the USA. However, autonomous driving implementation faces challenges, under-
scored by instances of malfunctions and accidents [6,9]. Therefore, considerable
testing is required to ensure autonomous vehicles function safely and correctly.

Simulation-based testing offers a promising alternative, enabling the effi-
cient generation and execution of diverse driving scenarios without the need for
the hardware-in-the-loop. Existing frameworks like Carla1 and BeamNG2 offer

1 https://github.com/carla-simulator/carla.
2 https://www.beamng.tech/.
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sophisticated environments that simulate real-world dynamics, weather, and traf-
fic patterns essential for rigorous testing. Recent advancements in autonomous
driving testing have explored various strategies for scenario generation aimed
at challenging specific features, such as lane-keeping. The SBFT 2023 competi-
tion [3] showcased innovative methods, such as combining evolutionary search
with reinforcement learning [7], leveraging Wasserstein generative adversarial
networks [11], and employing Extended Finite State Machines (EFSMs) [4].

However, a prevalent methodology among driving scenario generators has
been the use of randomly generated initial road maps (random seeds) [1,2],
optimized iteratively to induce safety requirement violations, such as driving
off lane. While this approach has its merits, it often produces many invalid
scenarios [3] or requires various iterations to achieve a single safety violation.

In this paper, we embark on a preliminary investigation into using real-world
maps as seeds for driving scenario generators. To achieve this, we sampled 25
1-km long segments of roads, identified as some of the most dangerous globally3.
These roads are subsequently evolved through multi-objective evolutionary algo-
rithms [1,2]. Although these maps do not lead directly to failing scenarios, we
conjecture they provide better starting points (seeds) for evolution.

We developed two variants of multi-objective road generators, leveraging
the framework provided by the latest SBFT tool competition, which integrates
BeamNG as a simulation environment. These variants diverge in their initial
seeding strategy; one employs real-world maps, while the other utilizes ran-
domly generated roads. Targeting BeamNG’s built-in AI to evaluate the lane-
keeping feature, we aimed to assess the efficacy of each seeding approach in
generating challenging scenarios, OOB errors in this example. Our preliminary
results demonstrate that the real-world map variant produced a significantly
higher number of failing scenarios and generated more valid roads (e.g., non-self-
intersecting), as evidenced by large effect sizes in our statistical analysis. This
result opens new avenues for research, particularly in enhancing the realism and
applicability of simulated testing environments for autonomous systems.

2 Seeding from Real-World Maps

To validate our conjecture, we have implemented a multi-objective (1+1) Evo-
lutionary Algorithm (EA) with an archive4, utilizing the framework provided by
the SBFT 2024 CPS competition tool5. We use an algorithm that evolves only
one solution/map at a time, as recommended in related literature for problems
with expensive-to-evaluate solutions [1]. (1+1) EA starts with an initial road
map, either randomly generated (first variant) or seeded from a real-world map
pool (second variant). After execution, the initial map is stored in the archive,
which keeps track of the non-dominated solutions across the generations. At each
generation, a new solution is obtained by either (1) mutating a solution from
3 https://www.dangerousroads.org.
4 https://doi.org/10.5281/zenodo.11221209.
5 https://github.com/sbft-cps-tool-competition/cps-tool-competition.
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the archive or (2) by sampling a completely new road (randomly generated or
sampled from the real-world map pool). The new/mutated map is executed and
compared with the existing solutions in the archive. We detail the main elements
of the search algorithm in the following paragraphs.
Real-World Pool. Our approach utilizes real-world roads from Google Earth6,
in the form of Keyhole Markup Language7 (KML) files, an XML standard nota-
tion for geographic annotations and visualization for Earth browsers. Specifically,
we sampled 25 real-world maps from an online database of dangerous roads from
around the world8. For this, we developed a pre-processing script that extracts
a kml file from Google Maps given the road information from the database.
Solution Encoding. We use the same encoding as the SBFT CPS com-
petition tool: a road map is characterized by a list of control nodes/points
P = {(x1, x2), . . . (xn, yn)}, where xi and xj denote the x and y coordinates
of the i-th node in the map. The road is generated by interpolating the control
points using the cubic spline interpolation.
Initialization and Sampling. In the initial phase and through the search,
new road maps are sampled. We implemented two sampling variants: (1) real-
world map sampling and (2) random sampling. In the former variant, the real-
world maps are a randomly selected seeding pool described above. In the latter
variant, a new road is generated by randomly generating control nodes and their
positions. The number of nodes is randomly selected between 7 and 10, and the
position of each node is randomly selected within the 1km road length.
Search Objectives. Our algorithm optimizes three objectives: (1) the total
out-of-bound (OOB) percentage, (2) the maximum speed of the vehicle, and
(3) the maximum steering angle of the vehicle. The OOB percentage measures
the percentage of the vehicle that is out-of-bounds during the simulation. A zero
percentage indicates that the vehicle is exactly within one of the lane boundaries
(lines); a negative value measures the distance to the lane boundaries; finally,
a positive value indicates that the vehicle is out-of-bounds and the percentage
value indicates the amount/percentage of the vehicle that is out-of-bounds.
Archive and Non-dominated Selection. Non-dominated solutions are stored
in an archive across test generations. Therefore, each newly generated/mutated
individual is compared with the individuals stored in the archive. If the new
individual is non-dominated, such that the three objectives have moved closer
to the maximum, it is added to the archive. If the new individual dominates an
individual in the archive, the latter is removed from the archive. Otherwise, if
an individual in the archive dominates the new solution, the latter is discarded.
Reproduction. The search algorithm randomly selects one of the non-
dominated solutions from the archive. The new road map is generated by apply-
ing three types of mutations: (1) adding a new control node, (2) removing a

6 https://earth.google.com.
7 https://en.wikipedia.org/wiki/Keyhole_Markup_Language.
8 https://www.dangerousroads.org.

https://earth.google.com
https://en.wikipedia.org/wiki/Keyhole_Markup_Language
https://www.dangerousroads.org
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control node, or (3) changing the position of a control node. Each mutation type
is performed with a probability of 1/3.
Test Execution. All the generated roads are designed to work within a 1km
map grid. Before a test is simulated, the tool checks that the generated road fits
correctly within the map boundaries. This is to eliminate any possible false neg-
atives, such as when the car starts immediately outside the map boundary and
is categorized as out-of-bounds (OOB). The road is then validated within the
SBFT’24 CPS framework for its viability. Numerous checks are carried out, such
as ensuring the road does not intersect or have too sharp corners. If the road is
now considered viable, then the simulation is executed. During the simulation,
the road and a car will be loaded within BeamNG, and the states will be moni-
tored to check that our car remains within the scope of our OOB parameters.
Final Remark. Seeding strategies have been investigated in evolutionary test-
ing for unit-level test case generation. In the context of autonomous driving, our
work is the first to explore using real-world maps as seeds for evolving driving
scenarios. The closest work to ours is the approach by Gambi et al. [5] and
Nguyen et al. [10]. The former approach generates driving scenarios from police
incident reports. They use natural language processing (NLP) methods to recon-
struct driving scenarios from natural language sentences. Nguyen et al. [10] also
create driving scenarios starting from existing maps stored in OpenDrive for-
mat. Compared to these related works, our approach (1) extracts the road maps
from Google Earth and (2) evolves these maps since (based on our preliminary
results) they do not directly lead to test failures without any evolution.

3 Preliminary Study

The goal of our preliminary study is to answer the following research question:
RQ1: How effective is real-world road seeding compared to random seeding

when generating driving scenarios?
We compare two variants of (1+1) EA, which differ w.r.t. seeding: one

employs real-world maps, while the other utilizes randomly generated roads as
described in the previous section. For testing, we target BeamNG’s built-in AI to
evaluate the lane-keeping, along with features included in the SBFT CSP tool.
For comparison we run each variant 8 times, comparing the results w.r.t (1)
number of failed test scenarios due to OOB violations, (2) number of valid test
roads as reported by the validity checkers of the tool competitions (e.g., non-
intersecting). For statistical analyses, we use the statistical tests recommended
by the literature [1,3]. We use the Wilcoxon rank sum test to assess the signifi-
cance of the difference (if any) with a p-value threshold set to 0.05. Additionally,
we also use the Vargha-Delaney (Â12) as the measure for the effect size.
Parameter Settings. When running the tests, we allocated a time budget
of 28800 s (8 h). A test fails if the driving vehicle is 50% out-of-bounds. We
ensure that when the vehicle is no more than 50% out-of-bounds, the test is
still considered as passing. Finally, we set a maximum speed of 85 km/h for
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our vehicle and the aggressive driving style set to 1.0, as suggested by the tool
competition when using BeamNG. Such a value sets the autonomous agent with
a balanced driving style, i.e., not too aggressive or not too cautious.

Fig. 1. Number of OOB failures

Preliminary Results. Figures 1b and a depict the boxplots of the number
of OOB failures and valid test scenarios, respectively. The results show that
the real-world seed maps perform considerably better than the random-seeding
counterpart in terms of both the number of failing scenarios and the number of
generated valid roads. On average, real-world seeding leads to five times more
failing driving scenarios (the median values being 10 vs. 2) and 30% more valid
roads compared to random seeding. When considering the number of OOB fail-
ures, the Wilcoxon rank sum test confirms the significance of the difference with
a p-value< 0.01 and a large effect size (Â12 = 0.80). The statistical difference
also holds for the number of valid scenarios, with a p-value = 0.02 and Â12 = 0.76
(large effect). Based on these findings, we can conclude that real-world seeding
performs considerably better than its random counterpart. This supports our ini-
tial intuition that real-world maps provide better starting points for generating
challenging driving scenarios.
Threats to Validity. The obvious threat to the validity of this work is the size
of our study, as we target only one autonomous system (BeamNG). For internal
validity, a larger number of test runs could have been considered. However, this
would incur a significant computational cost as the current study required 128 h
of test execution. As this is a preliminary study and given the large effect size
observed in our results, we are confident that further executions would result in
a similar outcome. The other threat is thus external, as this preliminary study
only considered random seeding as the baseline. Replicating these results in a
larger study with other road generators would aid in minimizing external threats.
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4 Conclusions and Future Work

Our study reveals that real-world roads, with their inherent complexity due to
longer lengths and more frequent turns, provide a more robust and more effective
starting point for generating driving scenarios compared to randomly generated
roads. Additionally, having more valid test case scenarios makes it more likely
that evolution can find failing mutations. This preliminary work serves as a
baseline for the inclusion of real-world elements in simulation-based testing. It
is not simply the corners and length of these roads that would lead them to be
dangerous in the real world, but other factors as well. To improve this work in
the future, we would like to investigate the usage of the vertical axis, adding hills
and blind verges to the roads. We will also examine the effect of considering a
larger sample of real-world roads, as well as the impact of varying the length of
the road maps. More aspects of the mutation will also allow us to experiment
with other many-objective search techniques. This will extend the experiment
by comparing the efficacy of these various algorithms for seed mutation.
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