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Quantum computing platforms rely on simulators for modelling circuit behaviour prior to hardware execution,
where inconsistencies can lead to costly errors. While existing formal validation methods typically target
specific compiler components tomanage state explosion, they oftenmiss critical bugs. Meanwhile, conventional
testing lacks systematic exploration of corner cases and realistic execution scenarios, resulting in both false
positives and negatives.
We present FuzzQ, a novel framework that bridges this gap by combining formal methods with structured test
generation and fuzzing for quantum simulators. Our approach employs differential benchmarking comple-
mented by mutation testing and invariant checking. At its core, FuzzQ utilises our Alloy-based formal model
of QASM 3.0, which encodes the semantics of quantum circuits to enable automated analysis and to generate
structurally diverse, constraint-guided quantum circuits with guaranteed properties. We introduce several test
oracles to assess both Alloy’s modelling of QASM 3.0 and simulator correctness, including invariant-based
checks, statistical distribution tests, and a novel cross-simulator unitary consistency check that verifies func-
tional equivalence modulo global phase, revealing discrepancies that standard statevector comparisons fail to
detect in cross-platform differential testing.
We evaluate FuzzQ on both Qiskit and Cirq, demonstrating its platform-agnostic effectiveness. By executing
over 800,000 quantum circuits to completion, we assess throughput, code and circuit coverage, and simulator
performance metrics, including sensitivity, correctness, and memory overhead. Our analysis revealed eight
simulator bugs, six previously undocumented. We also outline a path for extending the framework to support
mixed-state simulations under realistic noise models.
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1 Introduction
Noisy Intermediate-Scale Quantum (NISQ) devices define the current frontier of quantum com-
puting, providing access to quantum systems with modest qubit counts and inherent noise char-
acteristics [2, 6, 49]. While not yet fault-tolerant or sufficiently large to demonstrate definitive
quantum advantage, these systems serve as crucial development platforms for quantum algorithms
through frameworks including Cirq [17], Qiskit [26], Pennylane [72], Braket [3], Ocean [16], Azure
Quantum [41], and Rigetti Forest [59]. As quantum platforms scale to support larger qubit counts
and increased circuit complexity, ensuring their reliability and correctness has emerged as a critical
challenge in quantum software engineering [30, 37, 46, 48, 58, 66, 73]. This necessitates rigorous
testing of the simulators and compilers that constitute their foundational components. Analogous
to classical computing infrastructure, comprehensive testing of these quantum platforms is essential
for two key functions: the correct translation of quantum programs into executable circuits and
the precise simulation of quantum circuit behaviour. Given the limited availability and substantial
cost of accessing physical quantum hardware, these simulation tools play a pivotal role in quan-
tum algorithm development, circuit optimisation, and supporting both research and educational
initiatives in quantum computing.
Given the high cost of physical hardware access and the often proprietary nature of quantum
toolchains1, simulators have become the primary mechanism for developing and debugging quan-
tum programs. The deep integration of simulators with compilers and development environments
makes them effective tools for identifying bugs, from compilation crashes to subtle simulation
inaccuracies, across the entire software stack. However, while reliable simulators are essential for
quantum computing advancement [22], current validation techniques remain underdeveloped.
Existing automated testing approaches like metamorphic [30] and differential testing [7] often
lack systematic exploration, while formal verification methods for quantum compilers typically
target narrow components or transformations rather than holistic correctness [35, 36, 64], with
evaluations often confined to small-scale circuits [24, 35]. Furthermore, a fundamental challenge is
differentiating quantum-specific bugs from the large proportion of classical implementation errors
that manifest in these complex platforms [46], complicating bug isolation and diagnosis.
Our Work. To overcome these limitations, our method: (i) formalises quantum circuit specifications
using the Alloy specification language [27] and (ii) implements a structured fuzzing campaign for
quantum simulators leveraging this formal model. Our approach uses the model as a guided test case
generator, producing well-formed inputs for quantum simulators and validating outputs through
differential reasoning. When simulators produce divergent outputs, three possible explanations
emerge: 1) the Alloy model requires refinement, 2) an undocumented or underspecified behaviour
exists in one of the quantum platforms, or 3) a logical bug is present in either the compiler or
simulator. By integrating formal modelling with automated testing, we establish mechanised
formal semantics for quantum simulator specifications. We present our experience designing and
implementing a formal model that represents the standard quantum gate library using the Alloy
modelling language [27]. Alloy’s declarative approach to formally defining and analysing quantum
circuits proves particularly effective for designing circuits that explore deep state spaces and
edge cases. We iteratively refined the model in collaboration with quantum simulator experts,
as illustrated in Figure 1, to enhance its expressiveness and accuracy. This refinement ensures
the model faithfully represents standard quantum gates while supporting verification, validation
and debugging tasks. Using this refined model, we generated simulable quantum test circuits and
applied differential testing, complemented by additional verification techniques. This integration
of formal methods and testing overcomes the limitations of each approach when used in isolation.
1Though portions of platforms& docs can be public e.g. https://github.com/quantumlib/Cirq, https://github.com/Qiskit/qiskit.
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Fig. 1. Iterative validation of quantum simulators: Specifications are encoded in Alloy to generate XML-based
circuit seeds. These are then parsed and mutated with random gate angles before execution on simulator
backends. Discrepancies are reviewed by experts, leading to either formal model refinement or bug reporting.

Our work introduces the following key contributions:
• The unitary parity benchmark: An equivalence oracle for cross-simulator validation based on
our inter-unitary property, which verifies that unitary matrices from different simulators are
equivalent modulo global phase.

• Seed cultivation: A technique transforming abstract model-derived test cases into executable
circuits across quantum frameworks while preserving their logical consistency through the
unitary parity benchmark.

• A comprehensive case study demonstrating how integrating testing strategies with formal
methods creates a refinement cycle that iteratively improves the formal model and reveals
cross-platform specification inconsistencies.

• FuzzQ: An open-source framework implementing our approach that identified 8 distinct bugs, 6
previously undiscovered, in quantum simulation platforms.

Paper Structure. §2 defines the research problem, followed by an overview of key quantum concepts
in §3. §4 outlines the circuit model framework, while §5 discusses invariant-based testing. §6
explores fuzzing-based benchmarking, and §7 covers threats to validity of our model and approach.
§8 presents our evaluation and analyses performance, simulator issues and limitations, §9 discusses
related work. §11 summarises our findings. Data Availability Statement is in §12.

2 Testing ofQuantum Platforms

This paper proposes a hybrid methodology that integrates formal verification techniques with
systematic testing to create a comprehensive benchmarking framework for quantum simulators.
While testing enhances scalability by accommodating complex systems under test (SUTs) that may
comprise thousands of lines of code, formal methods provide precise control over test diversity
and ensure adherence to physical constraints. This approach is particularly valuable for designing
realisable quantum circuits with specific structural characteristics and operational semantics,
addressing fundamental limitations of purely random testing approaches. By combining formal
verification with systematic testing, we establish a rigorous framework that significantly improves
the reliability and correctness guarantees of quantum simulators.

Why Testing Quantum Simulators is Intrinsically Tied to Testing Quantum Platforms?

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 322. Publication date: October 2025.
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1 from qiskit import QuantumCircuit
2 qc = QuantumCircuit (2) # Create a 2-qubit circuit
3 qc.h(1) # Apply Hadamard gate to qubit 1 to create a superposition
4 qc.cx(1,0) # Apply CNOT with qubit 1 as control and qubit 0 as target

          ┌───┐
q_0: ─────┤ X ├
     ┌───┐└─┬─┘
q_1: ┤ H ├──■──
     └───┘

1 import cirq
2 q0, q1 = cirq.LineQubit.range (2) # Define qubits
3 circuit = cirq.Circuit( # Create a circuit with H-gate on q1 and CNOT
4 cirq.H(q1),
5 cirq.CNOT(q1,q0) )

0: ───────X───
          │
1: ───H───@───

Fig. 2. Circuits compiled from Qiskit (top) and Cirq (bottom), both featuring a Hadamard gate and a CX gate.
The circuit diagrams on the right are rendered in their respective native notations.

Quantum platforms constitute integrated ecosystems that combine hardware and software com-
ponents for developing, simulating, and executing quantum algorithms. The hardware layer en-
compasses physical infrastructure – quantum processors and communication systems based on
various technologies such as superconducting qubits, trapped ions, and photonic systems. Com-
plementing this, the software layer comprises frameworks, libraries, and simulators that facilitate
quantum algorithm design, compilation, optimisation, and validation. These platforms, typically
implemented using high-level, general-purpose languages like C/C++, Java, and Python [50], enable
researchers and developers to validate quantum programs before deployment on expensive and
resource-intensive quantum hardware. This economic reality makes thorough and systematic
simulator benchmarking essential for the quantum computing ecosystem.
Our benchmarking methodology focuses on the software layer, targeting two key issues: (1)miscom-
pilations – errors in quantum gate sequence generation producing incorrect circuit implementations,
and (2)missimulations – discrepancies in simulated behaviour across different platforms. Addressing
both is essential for ensuring correct execution and enabling effective debugging for quantum
program developers. We evaluate two predominant quantum frameworks: Qiskit [26] and Cirq [17].
These Python-based frameworks provide comprehensive toolchains for designing, simulating, and
optimising quantum algorithms through circuit-based representations for eventual hardware exe-
cution. Despite architectural differences, these frameworks should produce functionally equivalent
compiled circuits from identical logical inputs, yielding identical results as illustrated in Figure 2.
Yet, subtle discrepancies may emerge due to variations in compilation strategies, optimisation
techniques, simulation fidelity, and numerical precision handling. This observation motivates our
differential testing methodology, which compares outputs fromminimal quantum programs derived
from identical logical circuit specifications. By identifying inconsistencies between implementations,
we can pinpoint potential defects in either framework. We explore this approach in §6.
Challenges in Testing Quantum Simulators. Testing quantum simulators presents several inherent
challenges that significantly complicate verification and validation efforts. First, state space explosion
occurs as the state space grows exponentially with the number of qubits, making exhaustive verifi-
cation impractical. Non-deterministic outputs pose another challenge. Due to the probabilistic nature
of quantum measurements, multiple runs of identical circuits may yield different results, making
it impossible to define a single correct output. This requires sophisticated statistical methods to
compare output distributions against theoretical expectations, especially for large systems. The
probabilistic nature also leads to a lack of ground truth. This ambiguity significantly complicates
correctness verification, particularly when evaluating subtle implementation differences or novel
algorithms. Simulation fidelity is another issue, as simulators often approximate quantum behaviour
due to computational resource constraints. Ensuring accurate replication of quantum hardware be-
haviour, especially when modelling noise, decoherence, and error correction mechanisms, presents
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substantial technical challenges. Finally, divergent implementations across simulators, due to dif-
ferences in internal representations, approximations, and optimisations, can manifest as subtle
inconsistencies in simulation results, complicating cross-platform verification and validation, and
potentially masking real errors.
Formal methods offer a powerful approach for handling non-determinism and diverse implemen-
tations by generalising the verification process to all possible inputs (e.g. model checking and
symbolic execution). Yet, their applicability is limited by state-space explosion, making them im-
practical for verifying complex quantum platforms. In contrast, testing scales more effectively to
larger circuits but comes with its limitations. Some testing approaches lack in-depth code and bug
analysis capabilities (e.g. failing to capture error models or producing false positives/negatives),
while others provide detailed analysis but suffer from limited scalability (e.g. allowing a restricted
number of mutations) [7, 47]. Both formal methods and testing face exponential computational
costs when conducting precise static analysis, simulation, or comparisons with concrete quantum
hardware execution.
Combining Formal Methods and Testing. We propose an approach that integrates formal methods (via
Alloy) with systematic testing (via fuzzing) to address these challenges. Figure 1 illustrates FuzzQ ’s
methodology for validating quantum simulators. The process begins with encoding specifications in
Alloy to generate XML-based circuit seeds. These templates are parsed and instantiated into concrete
simulatable circuits, with random gate angles applied before execution on simulator backends,
like Qiskit and Cirq. We perform differential testing on the compiled circuits, with discrepancies
undergoing expert review, to drive model refinement, bug identification, or classification as “not
interesting”.
• Model Refinement: A mismatch may indicate that our formal model is too coarse. We refine
the model iteratively to address specification gaps and improve the model and underlying
specification.

• Bug Identification: Beyond specification gaps, discrepancies may stem from errors in quantum
platforms or bugs in classical libraries (e.g. Python or Java). For example, during 16-qubit
circuit simulations, we encountered a known issue in numpy [44, 45], previously reported as a
reliability concern for quantum platforms [47]. Other bugs (reported in §8) include compilation
and simulation failures, like crashes, hangs, miscompilations, and missimulations.

Divergent simulation results across platforms typically signal a mismatch. If the test circuit is valid,
this suggests a missimulation or a miscompilation bug. In §3.1 and §5, we describe how we model
quantum programming language specifications to generate quantum circuits of varying sizes and
complexities. In §6, we explore how this modelling approach enables fuzzing by applying various test
criteria to differential testing outputs (e.g. gate fidelity, unitary consistency) and validating results
using statistical tools such as Jensen-Shannon Divergence (JSD) and the Chi-Square Goodness-of-Fit
Test (𝜒2). In §7, we outline strategies to address non-bug discrepancies like global phase differences.

3 Background

3.1 Formal Methods and Testing

Formal methods provide a rigorous approach for specifying, designing, and verifying systems,
ensuring correctness and reliability. They enable formal specification of properties and systematic
exploration of behaviours, typically using a specification language. In this work, we use Alloy, a
declarative lightweight specification language [27].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 322. Publication date: October 2025.
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Alloy – Constraint-based modelling languages like Alloy [27] offer a powerful approach to system
specification, transforming abstract system descriptions into rigorous, analysable models. Cen-
tral to Alloy’s power is its Analyser – an automated reasoning engine that translates relational
specifications into Boolean satisfiability (SAT) problems. The Analyser acts as a sophisticated
mechanical theorem prover, automatically exploring model properties by systematically generating
and testing instances within user-defined scopes. By leveraging modern SAT solving techniques,
it can exhaustively search through potential system configurations, uncovering subtle structural
properties, invariants, and potential design vulnerabilities.
In our quantum circuit modelling (§4), Alloy’s type hierarchy, comprising of abstract signatures
and concrete signatures2, allows for nuanced representation of quantum circuit architectures.
Abstract signatures capture generalised structural patterns, while concrete signatures instantiate
specific computational elements.
Testing – Traditional testing methods validate system behaviour by comparing actual outcomes with
expected ones, or by ensuring compliance with a predefined specification. In this work, we integrate
several complementary techniques into a unified framework. Model-based testing [32] generates
test cases from formal specifications to ensure adherence to the intended design. Complementing
this, property-based testing shifts the focus from fixed test cases to high-level properties that
the system should exhibit; in quantum program testing, a common property is a unitary preserva-
tion. Metamorphic testing checks relationships between inputs and outputs that should remain
consistent under transformations, such as applying and then reversing a unitary operation to
recover the original state. Fuzz testing involves introducing randomised or edge-case inputs to the
system to stress-test its robustness. This technique is widely used in classical computing to identify
vulnerabilities, and it is equally valuable in the quantum computing domain. Fuzz testing helps
uncover corner cases that might expose weaknesses in the system’s resilience or error-correction
mechanisms. Fuzz testing can be extended with error injection, where controlled faults or noise
assess the system’s ability to handle errors and maintain stability. Finally, differential testing
compares outputs from multiple implementations under identical inputs, helping to tackle the
oracle problem [4], where it is difficult or impossible to determine the expected output a priori.
While these approaches often overlap, strategically combining them enables a balance between
theoretical precision and practical reliability, bridging the gap between formal specifications and
real-world implementation.

3.2 Quantum Computing

To maintain conciseness, this section highlights the specific set of gates used in this work as well as
the GHZ state. We start with a brief introduction to quantum states and circuits, the fundamental
building blocks of quantum computing. In the supplementary materials, we provide further details
on quantum states, gates, circuits, unitarity, Hermitian properties, and measurements. Readers
interested in a more thorough exploration can refer to [43].
Quantum State. A quantum bit (or qubit) is the fundamental unit of quantum information. Unlike
classical bits, which are either ‘0’ or ‘1’, qubits can exist in a superposition of both states. The
two fundamental states of a qubit, denoted as |0⟩ and |1⟩, form the computational basis. A linear
combination, or superposition of the basis states, is a state:

|𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, (1)

where 𝛼 and 𝛽 are complex numbers called amplitude coefficients. The coefficients encode both the
likelihood of observing each state and the phase of the quantum system [43]. A system of 𝑛 qubits
2The keywords shown in blue represent Alloy’s syntax for declaring these types.
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can be described as: |𝜓 ⟩ = |𝜓1⟩ ⊗ |𝜓2⟩ ⊗ · · · ⊗ |𝜓𝑛⟩, where each 𝜓𝑖 (1 ≤ 𝑖 ≤ 𝑛) represents a single
qubit state as given in Equation 1, and ⊗ denotes the tensor product. The system’s state is no longer
a simple tensor product of individual qubits if its qubits exhibit entanglement, where two or more
qubits are correlated in such a way that the state of one qubit cannot be described independently of
the others. In this case, the system is described by a more complex state, reflecting the non-classical
correlations between the qubits. The Greenberger–Horne–Zeilinger (GHZ) state, e.g., for 3 qubits
takes the form 1√

2
( |000⟩ + |111⟩), is a key multi-qubit entangled state [8, 43].

The state space of a system of 𝑛 qubits grows exponentially, with the state space represented by a
2𝑛-dimensional vector. While quantum computers can theoretically explore these vast state spaces
in parallel, simulation becomes increasingly challenging as 𝑛 grows due to the exponential scaling
of the statevector. Storing and manipulating these large vectors imposes significant computational
resource limitations, discussed further in §8.
Quantum Circuits are composed of quantum gates, each represented by a unitary matrix that
operates on the statevector of one or more qubits. When applied, a gate performs a linear trans-
formation on the statevector, altering the probabilities and phases of the quantum state. These
gates are inherently reversible, meaning every operation can be undone by applying its inverse.
Quantum gates enable the creation of superpositions, entanglements, and rotations of qubit states,
forming the building blocks of quantum computation. Figure 2 illustrates quantum circuits built via
Qiskit (top-right) and Cirq (bottom-right). The depth of a quantum circuit is the minimum number
of sequential layers of gates needed to implement the circuit, where each layer can operate on a set
of qubits in parallel.
A unitary gate satisfies the condition 𝑈𝑈 † = 𝑈 †𝑈 = 𝐼 , where 𝑈 † is the Hermitian conjugate
(or adjoint) of𝑈 and 𝐼 is the identity matrix. A Hermitian matrix equals its conjugate transpose,
i.e. 𝐴 = 𝐴†, meaning the matrix is symmetric in the complex sense. For a matrix 𝐴 = {𝑎𝑖 𝑗 }, the
Hermitian conjugate𝐴† is obtained by transposing𝐴 (swapping rows with columns) and taking the
complex conjugate of each element: 𝐴† = {𝑎 𝑗𝑖 }. We use unitaries for cross-simulator consistency
testing in §6.
Quantum measurements, generally associated with Hermitian operators, are the means by which
results are obtained in quantum computing. This process is inherently probabilistic: it collapses the
quantum state into a single basis state, making the system’s evolution irreversible. For example,
measuring the state |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ (Equation 1) in the computational basis yields the outcome
|0⟩ with probability |𝛼 |2 and |1⟩ with probability |𝛽 |2. Because a single execution provides only
one of these possible outcomes, the full probability distribution must be estimated statistically
by executing the circuit multiple times, a process known as applying shots. The precision of any
estimated observable improves proportionally to the inverse square root of the number of shots.
For rigorous testing, an entire experiment of many shots may itself be repeated multiple times
(repeats) to further aggregate results and reduce statistical error.
In our formal model (§4), we capture a comprehensive set of common quantum gates. This includes
single-qubit operations such as the Pauli gates (𝑋,𝑌, 𝑍 )3, the Hadamard (𝐻 ) and

√
𝑋 gates, and

general rotation gates (𝑅𝑥 , 𝑅𝑦, 𝑅𝑧 , and the parametrised 𝑈 (𝜃, 𝜙,𝛾) gate). We also model the phase
shift gate (𝑃 ) and its specific instances: 𝑆, 𝑆†,𝑇 , and 𝑇 †.
For multi-qubit interactions, our model includes controlled gates, such as the controlled-NOT (𝐶𝑋 )
gate and its generalisation, the 𝐶𝑈 gate, where𝑈 can be any of the Pauli gates. Larger multi-qubit

3The 𝑋,𝑌,𝑍 gates are also known as the bit-flip, phase-flip, and combined bit/phase-flip gates, respectively, with standard
notations 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 .
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operations can be composed via the tensor product, e.g., 𝐻 ⊗ 𝐻 ⊗ 𝐻 to apply a Hadamard to three
qubits simultaneously. The matrix definitions for these key gates are provided below.

𝑋 ≡
[ 0 1
1 0

] 𝑆 = 𝑃
(
𝜋
2
)

𝑆† = 𝑃
(
− 𝜋

2
) 𝐶𝑈 =

[ 1 0 0 0
0 1 0 0
0 0 𝑢11 𝑢12
0 0 𝑢21 𝑢22

]
𝑅𝑥 (𝜃 ) =


cos

(
𝜃
2

)
−𝑖 sin

(
𝜃
2

)
−𝑖 sin

(
𝜃
2

)
cos

(
𝜃
2

)  𝑅𝑧 (𝜃 ) =
[
𝑒
−𝑖 𝜃2 0
0 𝑒

𝑖 𝜃2

]
𝑌 ≡

[ 0 −𝑖
𝑖 0

] 𝑇 = 𝑃
(
𝜋
4
)

𝑇 † = 𝑃
(
− 𝜋

4
) 𝐶𝑃ℎ𝑎𝑠𝑒 =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 𝑒𝑖𝜃

]
𝑅𝑦 (𝜃 ) =


cos

(
𝜃
2

)
− sin

(
𝜃
2

)
sin

(
𝜃
2

)
cos

(
𝜃
2

) 
√
𝑋 =

[ 1
2 (1 + 𝑖 )

1
2 (1 − 𝑖 )

1
2 (1 − 𝑖 ) 1

2 (1 + 𝑖 )

]
𝑍 ≡

[ 1 0
0 −1

]
𝐻 ≡ 1√

2

[ 1 1
1 −1

]
𝑃 (𝜙 ) =

[
1 0
0 𝑒𝑖𝜙

]
𝑈 (𝜃, 𝜙,𝛾 ) = 𝑅𝑧 (𝜙 ) · 𝑅𝑦 (𝜃 ) · 𝑅𝑧 (𝛾 )

4 Quantum Circuit Formal Model

We developed a formal model of quantum gates in Alloy [27] to systematically generate diverse
quantum circuits. As a declarative modeling language, Alloy is well-suited for exploring and
generating randomised instances of complex systems that adhere to specified constraints, as depicted
in our modeling hierarchy (Figure 3). This approach allows for a comprehensive exploration of the
quantum operations space while guaranteeing the structural validity of the generated circuits. The
overall high-level process is illustrated in Figure 1.

We derive a structured hierarchy of Alloy signatures from the QASM 3.0 [15] specification for
modelling quantum circuits. Figure 3 depicts the structure we used in Alloy to model the hierarchy
of quantum circuit elements, including different gate types, qubits, and the circuit itself. The model
defines a set of signatures representing quantum components, establishing relationships between
them. For example, we represent a quantum gate abstractly through the Gate signature, which can
operate on one or more qubits, as indicated by the qubits relationship. This signature serves as a
parent for various quantum gate types, including common gates like X, H, and more specialised
gates such as rotation and controlled gates. Additionally, the abstract Circuit signature aggregates
a sequence of gates, defining the overall architecture of the quantum circuit.

Example 1 (Example of Alloy Circuit Modelling). Figure 4 presents a toy Alloy model for a
quantum circuit with H and CX gates. In the model, signatures (sig) define types like Qubit, abstract
Gates, and a Circuit. Concrete gates (e.g. HGate, CXGate) extend the abstract ones. Constraints
(facts) enforce structural rules like qubit connectivity and gate arity. The run command instructs
the Alloy Analyzer to find an instance satisfying these rules, which for this example corresponds
to the circuit diagram shown in Figure 2.
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1 sig Qubit {}
2 abstract sig Gate { qubits: set Qubit }
3 one abstract sig Circuit { gates: seq Gate }
4 sig HGate extends Gate {}
5 abstract sig ControlledGate extends Gate {
6 control , target: one Qubit ,
7 } {
8 qubits = control + target
9 control != target
10 }
11 sig CXGate extends ControlledGate { }
12 fact CircuitConstraints {
13 all g: Gate | g in Circuit.gates.elems => some g.qubits // Gates act on qubits
14 all g: (HGate) | #g.qubits = 1 // Single -qubit gates connect to one qubit
15 all q: Qubit | some g: Gate | q in g.qubits // All qubits are used by some gate
16 Circuit.gates.elems = Gate // Every gate is fully integrated into the circuit
17 }
18 run {} for exactly 2 Qubit , 2 Gate

Circuit

HGate CXGate

Qubi1 Qubi0

gates[1] gates[0]

qubits
qubits

target

qubits

control

Fig. 4. A toy quantum circuit modelled in Alloy with one possible instance visualised in Alloy Analyser.

A key feature of Alloy is its ability to be strategically guided by constraints to generate specific
configuration patterns. For example, to enforce symmetric interactions between qubits, we can
add a constraint requiring that every controlled gate is matched by a corresponding gate in the
reverse direction (e.g., from control to target, and target to control). This ensures the generation of
circuits with exact, bidirectional gate pairs. The following Alloy code implements this symmetry
constraint:

1 run { // For every controlled gate , a corresponding gate exists in reverse order
2 all g: ControlledGate | some gRev: ControlledGate |
3 gRev.control = g.target and gRev.target = g.control
4 }
5 for exactly 4 Qubit , exactly 6 Gate , 6 seq , 4 int

Example 2 (Symmetric Quantum Circuits Generated by Alloy). Below are several quantum circuits
generated by FuzzQ’s Alloy model that satisfy the symmetry constraint discussed previously. In
these examples, each controlled gate (e.g.𝐶𝑋,𝐶𝑌,𝐶𝑍 , and controlled rotations/unitaries) is mirrored
by a corresponding reverse gate, creating a balanced and symmetric circuit topology.

𝑞0 𝑋 𝑋 𝑋

𝑞1 𝑋 𝑋 𝑋

𝑞0 𝑋 𝑍 𝑅𝑦 (0.63𝜋 )

𝑞1 𝑅𝑦 (1.54𝜋 ) 𝑍 𝑋

𝑞0 𝐻 𝑍 𝑌

𝑞1 𝐻 𝑌 𝑍

𝑞0 𝑈 (𝜋, 𝜋, 𝜋2 ) 𝐻 𝑍

𝑞1 𝑍 𝑈 ( 𝜋4 , 0, 𝜋 ) 𝐻

5 Invariant-Based Testing
As a preliminary step before full differential testing, we employ invariant-based testing. This serves
the dual purpose of validating our Alloy model’s interpretation of quantum specifications and
acting as an early bug-detection mechanism. The approach verifies that specific physical or logical
properties (e.g., symmetries, self-inverse operations) hold across computations. To this end, we use
FuzzQ to generate circuit seeds that are structurally guaranteed to exhibit a given invariant, such
as the symmetric circuits in Example 2. A subsequent violation of the invariant during simulation
thus signals either a need for model refinement or a potential bug in the simulator itself. Below, we
outline three such invariants explored in our work.
Involutory Circuits. Certain quantum gates, like 𝑋 , 𝐻 , and 𝐶𝑋 , exhibit self-inverse behaviour,
meaning applying the gate twice restores the qubit to its original state (𝑈 2 = 𝐼 ). Using Alloy, we
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can systematically construct circuits that demonstrate this involutory property, whether through a
single self-inverse gate or a sequence of gates that collectively exhibit this property.
Symmetry Preservation. In quantum mechanics, symmetries correspond to conserved physical
properties. Our invariant tests verify that simulators correctly preserve these symmetries during
transformations. For example, a quantum state that is symmetric under rotation around the z-axis,
such as |+⟩ = 1√

2
( |0⟩ + |1⟩), must remain so after valid operations. Mathematically, an operation

𝑈 preserves this symmetry if it commutes with the rotation operator 𝑅𝑧 (𝜃 ), satisfying 𝑈𝑅𝑧 (𝜃 ) =
𝑅𝑧 (𝜃 )𝑈 . In a test case, we can verify that applying an 𝐻 gate followed by a 𝑍 gate to a basis state
correctly prepares and maintains such a z-axis rotational symmetry, ensuring the simulator adheres
to this physical principle.
Circuit-Specific Invariants. Certain recognisable invariants are expected to hold for specific quantum
circuits, regardless of the simulator used, such as in the Greenberger-Horne-Zeilinger (GHZ) state.
A GHZ state is a maximally entangled quantum state. This means that measuring one qubit instan-
taneously determines the state of all others, regardless of their spatial separation, exemplifying
quantum nonlocality. For an 𝑛-qubit GHZ state, |𝐺𝐻𝑍 ⟩ = 1√

2

(
|0⟩⊗𝑛 + |1⟩⊗𝑛

)
, measurement out-

comes will always yield either all zeros or all ones, demonstrating perfect correlation. For instance,
a 3-qubit GHZ state, |𝐺𝐻𝑍 ⟩ = 1√

2
( |000⟩ + |111⟩), results in either |000⟩ or |111⟩ upon measurement.

This perfect correlation reflects the symmetry and predictability inherent in entangled quantum
states, highlighting the unique nature of quantum measurement outcomes.

6 FuzzQ: Fuzzing-Based Benchmarking ofQuantum Circuits
Building on our formal model (§4) and its initial validation (§5), we now detail our fuzzing-based
methodology for evaluating the accuracy and consistency of quantum simulators. Our approach uses
the Alloy model as a guided input engine for a rigorous benchmarking strategy that systematically
assesses simulator behaviour across a wide range of scenarios. The process consists of four key
stages:
(1) Formal Model Construction and Validation: Using and refining the formal model as discussed in

§4 and §5.
(2) Test Case Generation: Generating random, constraint-guided quantum circuits designed to

expose subtle behaviours (§6.1).
(3) Differential Testing: Executing the generated circuits on multiple simulators and assessing them

against various test criteria (§6.2).
(4) Discrepancy Validation and Classification: Identifying and classifying discrepancies found across

a broad range of circuit types and complexities.
The following subsections detail stages 2-4.

6.1 Test Case Generation via Random Synthesis and Guided Mutation
Our test generation employs a two-pronged, adaptive fuzzing approach: random synthesis for broad
exploration, complemented by guided mutation for targeted refinement of interesting cases.
Random Synthesis. The synthesis phase uses the Alloy Analyser to generate a diverse corpus of
circuit seeds. These seeds are not complete circuits but rather structural blueprints, specified as
instances of our formal model (§4). Each seed defines a circuit’s fundamental topology: the number
of qubits, the sequence of gate types (e.g. 𝐻 , 𝐶𝑋 ), and their connectivity. The process is guided by
constraints within the Alloy model, which allows for an implicit classification of test cases based on
the properties enforced. For example, the symmetry constraint shown in Example 2 directs Alloy
to generate a specific class of circuits exhibiting that structure, enabling targeted exploration.
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These abstract seeds are then “fleshed out” into simulable circuits by assigning concrete values to
numerical gate parameters (e.g. rotation angles). We use three parameterisation strategies:
• Random Sampling of values within valid parameter ranges.
• Edge Cases & Critical Values, such as standard angles (0, 𝜋, 2𝜋 ), near-zero perturbations (≈
10−10), extreme values (infinities, bit shifts), Rabi frequency rotations (𝜃 = Ω𝑡 ), and QFT angle
discretisations (𝜃 = 2𝜋/2𝑘 ).

• Small Perturbations from standard values to identify rounding errors and numerical drift.
These fully parametrised circuits are then executed across multiple simulators to establish a baseline
for consistency, with any discrepancies flagged for guided mutation.
Guided Mutation. This phase takes discrepant circuits from synthesis and applies targeted modifica-
tions to intensify inconsistencies and pinpoint failure conditions. Instead of generating entirely
new cases, it refines existing ones via:
• Parameter Tweaks: Incremental adjustments to gate parameters like rotation angles.
• Structural Modifications: Minor alterations to circuit topology, such as rearranging gates.
• Repetition and Scaling: Expanding the circuit with more qubits or gate layers to test for size-
sensitive errors.

Following eachmutation, circuits are re-simulated and results are compared to baselines. This creates
an iterative feedback loop, shifting the process from broad, random exploration to a structured,
investigative one. This overall approach, which can be described as seeded mutation fuzzing,
enhances test diversity and efficiency by focusing resources on high-impact cases and supporting
continuous refinement.

6.2 Test Criteria
To assess quantum simulators effectively, we establish rigorous test criteria that capture essential
quantum circuit behaviours. Since determining exact outcomes of generated test circuits is often
computationally intractable, we employ differential testing. This approach cross-validates simulator
outputs by executing identical input circuit seeds across multiple platforms and systematically
comparing their results. Rather than relying on external oracles, we evaluate intrinsic quantum
properties – such as statevector evolution and probability distributions – to identify inconsistencies.
Below, we detail three core aspects of our evaluation methodology.

6.2.1 Gate-by-Gate Fidelity. This method evaluates the consistency of quantum state evolution by
tracking statevector deviations after each gate operation, ensuring simulators produce equivalent
intermediate states throughout the simulation. For a set of 𝑁 simulators, let 𝜓𝑖 denote the stat-
evector produced by simulator 𝑖 , where 𝑖 = 1, 2, . . . , 𝑁 . The difference between any two simulators’
statevectors should be bounded by a tolerance 𝜖 :

∥𝜓𝑖 −𝜓 𝑗 ∥2 ≤ 𝜖 ∀ 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁 }, 𝑖 ≠ 𝑗 . (2)

When this condition is met, the simulators demonstrate agreement in correctly reproducing the
expected quantum state evolution. However, direct statevector comparison (Equation 2) is sensitive
to global phase differences—physically meaningless variations4 that can introduce artificial discrep-
ancies even when simulators produce equivalent physical states. To address this limitation, we use
fidelity – a more robust metric that quantifies the "closeness" of quantum states while accounting
for small numerical deviations and ignoring global phases. For pure states, the fidelity 𝐹 between
statevectors𝜓𝑖 and𝜓 𝑗 is defined as:

𝐹 (𝜓𝑖 ,𝜓 𝑗 ) = |⟨𝜓𝑖 |𝜓 𝑗 ⟩|2 ∀ 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁 }. (3)

4Global phase differences do not affect measurement probabilities or observable properties of quantum states.
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┌───┐                                                       
 q_0: ┤ X ├─────────────────────────────────────────────────
      └───┘                                                    
 q_1: ──────────────────────────────────────■───────────────
      ┌───┐                   ┌─────────────┴─────────────┐    
 q_2: ┤ X ├──■────────────────┤ U(8.1843,4.6261,2.2429,0) ├─
      └───┘┌─┴─┐    ┌───┐     └───────────────────────────┘ 
 q_3: ─────┤ H ├────┤ I ├───────────────────────────────────
           └───┘    └───┘                                                                                                     
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                          │                               
                          ┌                           ┐   
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Qiskit Circuit:

Cirq Circuit:
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( = 𝐼

Fig. 5. Gate-by-Gate state fidelity evolution between Qiskit and Cirq simulators, with final Unitary Parity
Benchmark application.

Fidelity values range from 0 (completely orthogonal states) to 1 (identical states), providing a
more tolerant metric for comparison. By establishing an acceptable threshold (e.g. 𝐹 ≥ 0.99), we
ensure simulators produce sufficiently similar quantum states despite potential minor numerical
discrepancies arising from floating-point limitations.
The gate-by-gate fidelity comparison enables robust validation of quantum state similarity between
simulators. Figure 5 illustrates this approach with a gate-by-gate fidelity evaluation between Qiskit
and Cirq implementations, tracking a test circuit through five distinct intermediate quantum state
evolution points.

6.2.2 Probabilistic Consistency of Measurement Distributions. Our evaluation assesses two critical
aspects of simulator performance: alignment with theoretical expectations and cross-simulator
consistency in measurement outcomes. To quantify these, we employ two complementary statistical
methods:
The Chi-Square Goodness-of-Fit test (𝜒2) evaluates individual simulator accuracy. It compares ob-
served measurement counts to expected probabilities derived from the final statevector’s theoretical
distribution (§3.2). The resulting 𝑝-value represents the probability of obtaining the observed test
statistic (or more extreme) if the null hypothesis – that observed and expected distributions match
– is true. A low 𝑝-value (< 𝛼 , typically 0.05) indicates a statistically significant deviation between
measured outcomes and theoretical predictions, leading us to reject the null hypothesis; larger
𝑝-values suggest consistency with theoretical predictions.
The Jensen-Shannon divergence (JSD) quantifies cross-simulator consistency by measuring similarity
between output distributions. This metric ranges from 0 (identical distributions) to 1 (completely
different), allowing us to detect subtle variations in how different simulators process identical
quantum circuits. [61, 62].
Together, these metrics provide a comprehensive statistical framework for evaluating both the
absolute accuracy and relative consistency of quantum simulators.

6.2.3 Cross-Simulator Unitary Consistency. To detect subtle semantic differences in how simulators
realise the same logical gate (a key challenge in cross-platform validation), we developed the
Unitary Parity Benchmark. This method verifies that different quantum simulators implement
unitary operations consistently. We examine whether the matrix product 𝑈

𝑖
𝑈

†
𝑗
is proportional

to the identity matrix 𝐼 , where 𝑈𝑖 and 𝑈 𝑗 represent the unitary transformations from different
simulators (e.g. Qiskit and Cirq, respectively). This equivalence relation, invariant to global phase
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differences, confirms that both simulators faithfully implement the same quantum transformation.
The theoretical foundation for this approach is formalised as follows:
Theorem 1 (Unitary Parity Benchmark in Quantum Simulation). Let 𝑆1, 𝑆2, . . . , 𝑆𝑛 be a collection of
quantum simulators each implementing the same quantum circuit 𝐶 on identical initial states. Each
simulator produces a unitary matrix𝑈𝑖 describing the quantum state evolution under the circuit. The
unitaries𝑈𝑖 and𝑈 𝑗 from different simulators are equivalent up to a global phase if and only if there
exists a phase factor 𝑒𝑖𝜙 such that𝑈

𝑖
𝑈

†
𝑗
= 𝑒𝑖𝜙 𝐼 .

Proof. We prove the equivalence in two directions:
(⇒) If𝑈𝑖 and𝑈 𝑗 are equivalent up to a global phase, then𝑈𝑖 = 𝑒𝑖𝜙𝑈 𝑗 for some phase 𝜙 . Multiplying
both sides on the right by𝑈 †

𝑗
:

𝑈
𝑖
𝑈

†
𝑗
= 𝑒𝑖𝜙𝑈

𝑗
𝑈

†
𝑗

= 𝑒𝑖𝜙 𝐼

since𝑈 𝑗 is unitary, implying𝑈
𝑗
𝑈

†
𝑗
= 𝐼 .

(⇐) Conversely, suppose 𝑈
𝑖
𝑈

†
𝑗
= 𝑒𝑖𝜙 𝐼 for some phase 𝜙 . Multiplying both sides on the right by𝑈 𝑗 ,

we have:
𝑈
𝑖
𝑈

†
𝑗
𝑈
𝑗
= 𝑒𝑖𝜙 𝐼𝑈 𝑗

𝑈𝑖 = 𝑒𝑖𝜙𝑈 𝑗

This establishes that𝑈𝑖 and𝑈 𝑗 are equivalent up to the global phase factor 𝑒𝑖𝜙 . Since global phases
have no observable effect on quantum measurements, the unitaries 𝑈𝑖 and 𝑈 𝑗 represent physically
equivalent quantum operations. □
This theorem underpins our equivalence oracle used in cross-simulator validation. The oracle
examines whether the product 𝑈

𝑖
𝑈

†
𝑗
is proportional to the identity matrix by checking if all off-

diagonal elements are approximately zero and all diagonal elements have approximately equal
magnitude. Any significant deviation from this condition reveals meaningful implementation
differences between simulators.
In practice, we compute the normalised quantity

∥𝑈𝑖𝑈
†
𝑗
−𝑒𝑖𝜙 𝐼 ∥𝐹√
𝑑

where 𝑑 is the dimension of the
matrices, ∥ · ∥𝐹 is the Frobenius norm, and 𝜙 is chosen to minimise this expression. This approach
provides a robust measure of unitary equivalence that accounts for both the global phase and
numerical precision limitations.
Limitations of Differential Testing. A core assumption of our differential testing approach is
that independently developed simulators are unlikely to fail in the exact same way. However, if all
simulators under test were to produce an identical, incorrect result for a novel circuit, the differential
oracles (fidelity, JSD, Unitary Parity) would not detect the error. To mitigate this risk, our overall
methodology does not rely solely on differential testing. We complement it with property-based
and invariant-based testing (§5) and validate against circuits with analytically known outcomes
(§7), providing an absolute correctness check for certain classes of circuits.

7 Threats to Validity
While our validation approach was carefully designed for robustness, several concerns must be
acknowledged.
The accuracy and completeness of our tool are crucial; inaccuracies in representing quantum
circuits can lead to discrepancies between simulated and expected outcomes. Additionally, inherent
simulator limitations (differences in implementation, numerical precision, and performance) can
create discrepancies potentially misattributed to our framework. Another concern is overfitting
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risk, where models performing well on specific circuits may struggle to generalise across a wider
range of quantum operations, leading to potentially misleading conclusions. Test case selection
plays a vital role; limited test sets may overlook significant issues in both model and simulators. As
circuit complexity increases, scalability becomes a pressing concern, making comprehensive testing
impractical and allowing errors to persist undetected. Furthermore, variations in noise and error
rates across simulators can complicate evaluation, potentially affecting simulation accuracy. It is
important to note that our current study primarily evaluates simulators in the context of pure-state
evolution, where noise and decoherence effects are ideally absent; a detailed discussion of the
implications for mixed states and noisy simulations is presented in §10. Finally, the probabilistic
nature of quantum measurements requires careful statistical analysis to avoid misinterpreting
discrepancies between expected and observed outcomes.
These challenges underscore the need for rigorous validation and raise a fundamental question:
What if the framework itself is flawed?
We implement four strategies to mitigate this risk and strengthen internal validity.
Dual-layered Simulator Alignment Checks. We combine gate-by-gate fidelity (see §6.2.1) with
final unitary equivalence (see §6.2.3) to establish a robust validation framework. To motivate the
necessity of the latter, more rigorous check, the following example and lemma illustrate a subtle
discrepancy where naive statevector comparison can be misleading, underscoring a potential flaw
that our Unitary Parity Benchmark is designed to avoid.

Example 3. Consider a quantum circuit where the 𝐶𝑋 gate’s implementation varies between
Qiskit and Cirq. In the Qiskit implementation, the standard 𝐶𝑋 gate operates with a control qubit
determining the target qubit’s flip. Conversely, the Cirq implementation inadvertently swaps the
control and target qubit roles.
Lemma 1 (Deceptive Equivalence). Two quantum circuits may produce identical output for a specific
input state while fundamentally differing in their underlying transformation.

Proof. Matrix analysis reveals the implementation asymmetry:

𝑈Qiskit ·𝑈
†
Cirq =

[ 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
︸    ︷︷    ︸

𝐶𝑋

·
[ 1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

]
︸    ︷︷    ︸
𝐶𝑋reversed

†
=

[ 1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

]
(4)

For the initial state |00⟩, both implementations leave |00⟩ unchanged, trivially passing a naive
statevector comparison. However, the unitary product test exposes a non-trivial transformation
that differs from the identity matrix. □
Many quantum algorithms initialise from |00 . . . 0⟩, making such subtle implementation discrepan-
cies particularly elusive.

Grounding in Known and Real-World Circuits. To further ground our model and testing, we
use two complementary approaches. First, we validate against fundamental circuits with well-
established theoretical outcomes, such as Bell and GHZ states, as detailed in our invariant testing
(§5). Second, we encode externally sourced, real-world quantum circuits as predicates in our Alloy
model. Verifying that the model can find satisfying instances for these predicates ensures our
framework remains grounded in practical applications.
Iterative Model Validation and Refinement. We do not assume our initial Alloy model is
perfect. Instead, we gain confidence in its correctness and systematic nature through a multi-
faceted validation process inspired by CEGAR-style abstraction refinement.
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• Specification-Driven Modelling: The model’s hierarchy and signatures (§4) are systematically
derived from the OpenQASM 3.0 specification [15], ensuring it is grounded in an established
standard.

• Internal Consistency Checking: The Alloy Analyser itself helps find logical inconsistencies or
underspecified aspects within our model during development.

• Invariant-Based Validation: As detailed in §5, we use the model to generate circuits that must
satisfy known physical invariants. If a simulator correctly adheres to an invariant, but the model
had difficulty expressing it, it signals a need for model refinement.

• Feedback Loop with Differential Testing: The core process (Figure 1) serves as a continuous valida-
tion loop. Discrepancies traced back to an oversimplification in our model act as counterexamples
to refine its specification, increasing its fidelity over time.

This iterative process strengthens our confidence in the model’s accuracy and its systematic
representation of quantum circuits.

8 Evaluation

We aim to address the following research questions in our evaluation:
𝑅𝑄1 How efficiently and comprehensively can FuzzQ generate test cases? We investigate Alloy’s gen-

eration throughput and then analyse the structural and code-level coverage of the generated
test suite to assess its thoroughness.

𝑅𝑄2 Is this comprehensive test suite effective in detecting bugs? Using the diverse set of circuits
generated, we conduct large-scale experiments on a CloudLab machine [19] to assess the
bug detection capability of our approach. Priorly, we needed to establish a clear definition of
what constitutes a bug. To achieve this, we further ask RQ3 and RQ4.

𝑅𝑄3 How many shots are required to get a reliable quantum output? We determine the optimal
number of shots for simulating the quantum circuit by measuring the closeness of probability
distributions produced by Qiskit and Cirq simulators using the Jensen-Shannon Divergence
(JSD).

𝑅𝑄4 What is the accuracy of the simulator in reproducing expected results? We assess the accuracy
of Qiskit and Cirq simulators using 𝜒2 tests and JSD metrics to determine precision sensitivity
in benchmarking, ensuring that only meaningful bugs are reported to developers.

𝑅𝑄5 What are the scalability and stability limitations of quantum test case execution? We examine
the scalability of quantum simulation with increasing qubit count, focusing on memory
consumption and numerical stability.

8.1 RQ1: Test Case Generation and Coverage

Throughput. The Alloy Analyser generates quantum circuit instances through a two-phase process:
1) Constraint Processing – translating the model into a propositional formula with necessary
variables and clauses; and 2) Solving – using a SAT solver to find satisfying assignments that meet
constraints. For a 12-qubit, 10-gate circuit, translation took 139 ms and solving required 226 ms.
To assess throughput, we measured generation rates using Alloy in command-line mode, which
significantly outperforms the GUI. This approach produced ~41,000 12-qubit, 10-gate circuits in
5 minutes (140 circuits/second). Throughput varies with model complexity (qubit count, circuit
depth, constraints), SAT solver selection, and hardware specifications.
Quantum Platforms Code Coverage. To evaluate the quantum platforms’ code coverage, we
instrumented Qiskit 2.2.0.dev0+6b4477f libraries under Python version 3.11.13+ and rust-
1.79.0stable, and Cirq 1.6.0.dev0 libraries under Python version 3.11.13+.
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Fig. 6. Line code coverage across qubit sizes on Cirq and Qiskit backends using FuzzQ-generated circuits.
Black error bars: standard deviation. Cirq’s standard deviation is minimal and not visible in the plot.

We sampled 500 XML-based circuit seeds uniformly at random from the full generated pop-
ulation (as in the throughput paragraph above). Each XML seed was fuzzed 5 times. Cover-
age was measured using coverage.py 7.9.2 for Python and for Rust components llvm-cov
18.1.7-rust-1.79.0-stable. This process was repeated independently 5 times, resulting in
5×500×5 simulable quantum circuits per platform. Reported results reflect the average across the
five runs.
Wemeasured coverage by progressively accumulating qubit sizes, starting from size 3, then including
sizes 4, 6, 8, 10, 12, and 15, with each step incorporating all smaller sizes. Figure 6 presents the line
code coverage for Qiskit (left) and Cirq (right). Qiskit achieved a higher average code coverage of
32,174.6 lines when combining Python (23,453 lines) and Rust (8,721.6 lines) components. Cirq
achieved an average code coverage of 21,680 lines.
The line coverage results in Figure 6 show a rapid early increase followed by saturation across both
platforms. For Cirq, coverage rises from 21,638 lines at qubit size 3 to 21,680 at size 4, and then
remains flat through size 15, indicating that small circuits are sufficient to fully activate relevant
code paths. Qiskit displays a similar trend but with higher overall coverage, saturating around
6 qubits. The black error bars highlight higher standard deviation at low qubit sizes in Qiskit,
likely because smaller circuits exercise less code than 8+ qubit circuits, while Cirq shows negligible
variation. This trend suggests that FuzzQ is highly effective at achieving structural and parametric
diversity early, generating compact circuits that already trigger much of the platform’s behaviour.
To further investigate this, we propose a second coverage metric focused on circuit diversity.
Circuit Coverage. To assess the effectiveness of our generated test cases in detecting bugs, we first
analysed the comprehensiveness of our test suite by evaluating a set of quantum-specific structural
coverage metrics. Unlike classical code coverage, which is inadequate for this domain, our metrics
assess the diversity of quantum operations and circuit topologies generated by FuzzQ. Our analysis
was performed on a set of 875 circuits randomly selected from the larger corpus of over 800,000
generated for our full evaluation. This sample, scaled from 3 to 15 qubits and comprising over
10,750 gate operations, confirms that our overall approach achieves high coverage:
• Gate Type Diversity:We achieved 100% coverage of the 30 distinct gate types defined in our Alloy
model, including a sophisticated mix of advanced multi-qubit gates (e.g. 19.3% controlled-U,
16.5% SWAP, 7.6% controlled-SWAP).

• Structural Uniqueness: Of the 875 circuits, 758 (86.6%) possessed unique structural topologies,
exploring a broad set of computational structures and 128 unique qubit interaction patterns.

• Two-Level Architecture Validation: Our separation-of-concerns approach was empirically vali-
dated: Alloy-generated XML templates provide comprehensive structural coverage while runtime
parameter generation ensures computational diversity, achieving superior coverage compared
to monolithic approaches.
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Table 1. Summary of reported issues in Qiskit and Cirq simulators

# Issue Description

1 SWAP Gate Ineffectiveness due to Transpiler Remapping (Qiskit): The logical effect of a SWAP gate can
be nullified in the final statevector under specific circuit structures due to dynamic qubit remapping during the
transpiler’s layout pass, which is not correctly reflected in all simulation paths [52].

2 Unpredictable Handling of seed_simulator (Qiskit Aer): Qiskit Aer accepts undocumented input types (e.g.
strings, booleans, floats) for seed_simulator1, resulting in inconsistent randomisation behaviour [53].

3 Inconsistent Statevectors for Fixed Seeds (Qiskit Aer): Using the same seed value does not always yield
identical statevectors in Qiskit Aer’s statevector simulator, contradicting expected deterministic behaviour [54].

4 Misleading Errors for Invalid Qubit Indices (Qiskit): Assigning extreme values (e.g. -1, 109) to
initial_layout2 produces vague error messages, making debugging difficult [51].

5 MatrixGate Does Not Support Symbolic Parameters (Cirq): Unlike other Cirq gates, MatrixGate does not
support symbolic parameters (e.g. sympy.Symbol), limiting its use in variational algorithms [12].

6 Numerical Instability with Large Angles (Cirq): Using extremely large or small angles (e.g. 𝜋100) in Cirq’s
unitary gates can result in non-unitary matrices, violating quantum gate constraints [13].

7 Transpilation Failure for Specific Unitaries (Qiskit): Qiskit’s transpiler fails with a compilation error when
the TwoQubitWeylDecomposition is applied to certain classes of 2-qubit unitary matrices, particularly those with
specific complex phase relationships between their elements, preventing circuit execution [55].

8 NumPy’s einsum Index Overflow in Large Quantum Circuits: Simulating 16+ qubits circuits may exceed
NumPy’s limit of 32 unique indices in einsum operations, leading to failures [44, 45, 47]. Using opt_einsum4

resolves this.
1 seed_simulator is a parameter in Qiskit’s Aer simulator backend that sets the seed for the internal random number generator. This
ensures reproducibility in simulations involving probabilistic processes, such as measurement sampling and noise models.

2 The initial_layout parameter in Qiskit allows users to specify a mapping of logical qubits to physical qubits on a quantum device.
3 The TwoQubitWeylDecomposition is an internal Qiskit function used for decomposing two-qubit gates into a sequence of simpler gates
based on the Weyl decomposition.

4 opt_einsum is a more efficient implementation of the einsum function in NumPy (Numerical Python), optimised for high-dimensional
tensor contraction.

This extensive structural and parametric coverage, validated through actual simulator execution
rather than theoretical analysis, provides a robust foundation for bug finding, giving high confidence
that the discrepancies we find are genuine simulator issues, not artifacts of a biased test suite.

Answer to 𝑅𝑄1: FuzzQ can efficiently and comprehensively generate test cases. Alloy provides
high-throughput circuit generation on standard hardware, while the generated test cases exhibit
extensive structural and parametric coverage. For code coverage, saturation was reached early
(between 4 and 6 qubits), demonstrating the effectiveness of our formal-methods-driven approach
in exploring a wide range of simulator behaviours with compact circuits.

8.2 RQ2: Bug Finding and Testing

Throughout our validation campaign, we identified and reported several key issues within both
Qiskit and Cirq simulators, summarised in Table 1. While some of these issues may appear straight-
forward in retrospect, their persistence in mature, widely-used simulation platforms highlights
the limitations of conventional testing. FuzzQ’s strength lies in its systematic, constraint-guided
exploration of circuit structures and parameter spaces, which can uncover subtle interaction bugs
that ad-hoc testing might miss.
For instance, Issue 1 (Unexpected Behaviour in Qiskit’s SWAP Gate) exposes a complex interaction
with the transpiler’s dynamic qubit remapping for layout optimisation. Under certain circuit
structures generated by FuzzQ, the transpiler would alter the physical qubit mapping in a way that
effectively nullified a subsequent SWAP gate’s intended logical effect on the final statevector. This
type of bug, where the outcome depends on the interplay between circuit structure, transpilation
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passes, and the final simulation method, is particularly well-suited for discovery through the
systematic and differential nature of our fuzzing framework. We note that 6 of the 8 bug types
discovered were previously undocumented. We have provided a description and reproducer for
this illustrative issue in our accompanying artifact (see §12).
The issues found stemmed from a range of causes, including inconsistencies in statevector outputs,
unexpected behaviours with quantum gate operations, and challenges with input handling. In some
cases, simulators exhibited errors due to extreme or unconventional qubit index values, as well as
limitations in handling symbolic parameters or large angle values. These findings underscore the
potential impact of such bugs on the reliability of quantum simulations.

Answer to 𝑅𝑄2: Yes, our approach proved highly effective, leading to the discovery of eight
distinct bug types across Qiskit and Cirq, six of which were previously undocumented.

8.3 RQ3: Determining the Optimal Number of Shots

To determine an optimal number of shots for reliable measurement outcomes, we analysed the
Jensen-Shannon Divergence (JSD) between the output probability distributions of Qiskit and Cirq.
Our analysis used a 10-qubit circuit, with shot counts increasing from 10 to 106, and each data
point repeated 1,000 times for statistical robustness. We observed consistent trends across circuits
of varying sizes, underscoring the generality of our findings.
As shown in Figure 7a, and in line with the law of large numbers, the mean JSD and its variance
both decrease as the number of shots increases. This reflects a reduction in statistical noise and
more stable, reliable measurement outcomes. Upon visual and statistical inspection, it is evident
that a clear plateau in variance reduction is reached at 1,000 shots (represented by the dash-dot
segment). To formalise this, we define the stabilisation point as the shot count where the JSD
variance first drops below a threshold of 10−3, which corresponds to this plateau.
Based on this analysis, we identified 1,000 shots as the point of stabilisation, where further increases
yield only marginal improvements in variance. However, to ensure maximum robustness and
minimise any residual fluctuation in our subsequent experiments, we conservatively chose to use
10,000 shots for all validation tasks.

Answer to 𝑅𝑄3: Our analysis shows that the JSD between simulator outputs stabilises with a
minimum of 1,000 shots. To ensure robustness, we conservatively selected 10,000 shots for all
subsequent experiments and recommend this threshold for developers conducting testing in
simulation, as it balances statistical reliability with computational overhead.

8.4 RQ4: Assessing Simulator Accuracy

(I) To evaluate simulator accuracy against theoretical predictions, we analysed 𝜒2 test results.
These tests generate 𝑝-values indicating whether observed probabilities significantly differ from
expected ones. When 𝑝 < 𝛼 (typically 0.05), the null hypothesis is rejected. We computed rejection
rates across different qubit counts and circuit depths, with shots fixed at 10,000.
As shown in Figure 7b, we observe no significant trends. Qiskit and Cirq demonstrate comparable
behaviour overall, with one notable exception: Qiskit exhibits a distinct spike in 𝑝-values between

5Jittering is applied to spread the points horizontally within each shots-region while preserving the original JSD (y-values).
This technique helps visualise the distribution of the data by reducing point overlap, allowing for clearer differentiation
between measurements. The primary focus remains on the vertical values (the JSD values), as they are the key data of
interest. The shaded regions serve solely to visually segment and clearly differentiate between various shot ranges.
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and Cirq simulations

circuit depths 6 and 12 with 3 qubits, reaching values as high as 69% – significantly deviating from
the otherwise consistent pattern.
(II) To provide further insight, we introduced a new metric, the Simulated Performance Score (SPS).
SPS aggregates the proximity to 1 across all experiments, providing a single value that reflects
the simulator’s performance based on 𝑝-values. The SPS for each simulator was defined as the
mean proximity to 1 across all experiments: SPS = 1

𝑁

∑𝑁
𝑖=1 (1 − 𝑝𝑖 ), where: 𝑁 was the number of

experiments, 𝑝𝑖 was the 𝑝-value for experiment 𝑖 (for either Qiskit or Cirq), and 1 − 𝑝𝑖 was the
proximity to 1 for each experiment. The closer the SPS was to 0, the better the simulator performed
in terms of aligning with the expected results. After computing the SPS for a set of approximately
600k experiments, Qiskit had an SPS of 0.4657, while Cirq performed marginally better with an SPS
of 0.4463.
(III) We applied polynomial regression to explore the relationship between SPS, the number of
qubits, and circuit depth for Qiskit and Cirq. The results showed limited predictive power, with
𝑅2 (coefficient of determination) values of 0.063 for Qiskit and 0.081 for Cirq. 𝑅2 indicates the
proportion of variance in SPS explained by the regression model, with these values suggesting it
explains only a small fraction of the variance. Additionally, the Mean Squared Error (MSE) was
0.106 for Qiskit and 0.096 for Cirq, with Cirq showing slightly lower prediction errors.
Figure 8 complements the regression analysis by visualising SPS trends across the number of qubits
and circuit depth. Both factors exhibit weak correlations with SPS, though circuit depth has a
marginally stronger effect. As expectedly, greater depth introduces complexities such as increased
entanglement, interference effects, and numerical instability, all of which amplify the computational
effort needed for accurate simulation, especially as the state space grows exponentially. It highlights
the increasingly demanding and less predictable nature of simulations with greater depth.
(IV) We analysed the Jensen-Shannon Divergence (JSD) between the Qiskit and Cirq simulators,
finding a mean value of 0.0109 across 600k simulations, indicating reasonable alignment. The
influence of the number of qubits and circuit depth on the JSD is minimal, as shown in Figure 8.
Polynomial regression confirms this, with a low 𝑅2 value of 0.1488, suggesting that the model
explains only 14.88% of the variance. Although there is a slight positive relationship between
the number of qubits, depth, and JSD, the overall fit is weak, and the regression coefficients and
interaction terms suggest a minimal, nonlinear influence.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 322. Publication date: October 2025.



322:20 Klimis, Bensoussan, Chachkarova, Even-Mendoza, Fortz, Lenihan

2 2 2 2
3

3 3 3 3

4

4 4

4
4

4

5

5 5

5
5

5
6

6 6

6

6
6

7

7 7

7 7 7

8

8

8

8
8

8

9

9

9

9 9 9

10

10
10

10 10
10

11

11
11

11 11 11

12

12
12

12 12
12

13

13
13

13 13 13

14

14
14

14 14

14

15
15

15
15

15

15

16 16
16 16

16 16

17
17

17

17 17 1718 18

18

18 18 180

0.2

0.4

0.6

0.8

2 2 2 2

3

3 3 3 3

4

4 4

4

4
4

5

5 5

5
5

5
6

6 6

6
6

6

7

7 7

7 7

7
8

8

8

8
8

89
9

9

9
9 9

10

10 10

10
10

10
11

11

11

11 11

1112 12
12

12 12

1213 13

13

13
13

13

14
14

14

14 14

14

15
15

15

15

15

15

16 16

16 16

16 16

17
17

17

17 17 1718 18

18

18 18 180

0.2

0.4

2 2 2 23 3 3 3 3

4

4 4
4

4
4

5

5 5

5 5 5
6

6 6

6 6

6

7

7 7

7 7

7

8

8

8

8
8

8

9

9

9

9
9 9

10

10

10

10
10

10

11

11

11

11 11

11

12

12

12

12 12

12

13

13

13

13
13 13

14
14

14

14

14

14

15 15

15

15

15

15

16 16

16

16

16 16

17 17

17

17 17 1718 18

18

18 18 18

3 4 6 8 10 12
0

0.005

0.01

0.015

Number of Qubits

S
PS

 (
Q

is
ki

t)
S
PS

 (
C
ir
q)

JS
D

Fig. 8. Simulated Performance Scores (SPS) for Qiskit (top) and Cirq (middle), along with the Mean JS
Divergence between Qiskit and Cirq (bottom). The data is grouped by the Number ofQubits, with Circuit
Depth annotated above each bar.

Although the regression models for both the 𝜒2 and JSD metrics capture some trends, the results
imply that incorporating additional features could improve predictive accuracy. As discussed in
§8.3, the number of shots appears to be a key factor influencing the divergence between simulators.

Answer to 𝑅𝑄4: We assessed the accuracy of Qiskit and Cirq simulators using 𝜒2 tests and JSD.
The 𝜒2 test results revealed no significant trends, except for an anomaly in Qiskit at specific
depths for circuits with the lowest qubit count. The SPS indicated similar accuracy levels, with
Cirq performing slightly better (SPS = 0.4463 vs. 0.4657 for Qiskit). Polynomial regression on
SPS and JSD yielded low predictive power, suggesting weak dependence on qubit count and
circuit depth. Overall, both simulators show reasonable alignment, with accuracy influenced by
depth and potential additional factors like shot count.

8.5 RQ5: Scalability and Numerical Stability inQuantum Circuit Simulations

We examine scalability and stability through three lenses: overall runtime cost, memory usage
under increasing qubit count, and numerical stability over deep circuits.
Overall Runtime Cost. The total runtime of our methodology is composed of two distinct phases.
The first, circuit seed generation with Alloy (as detailed in our answer to RQ1, §8.1), is highly
efficient and does not constitute a performance bottleneck. The second and dominant cost is the
subsequent quantum circuit simulation, determined by the simulator under test and the circuit’s
complexity, not our framework. For our evaluations on the CloudLab node, simulating a single
~12-qubit circuit with 10,000 shots typically took from under a second to a few seconds per circuit.
Therefore, executing the entire corpus of over 800,000 circuits for our accuracy studies represented
a significant computational task that necessitated parallel execution on the high-performance
computing resources.
Memory Usage and Qubit Scalability. Our experiments focused on quantum systems with up to 12
qubits, as simulating larger systems rapidly becomes memory-intensive due to the exponential
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growth in the quantum state size and the unitary matrix governing its evolution. Our approach is
not inherently limited to this range and can scale to larger systems using GPUs or more powerful
hardware.
For a system with 𝑛 qubits, the unitary matrix representing the quantum state’s evolution is of
size 2𝑛 × 2𝑛 , with each entry being a complex number. This leads to an exponential increase in
both the statevector (of size 2𝑛) and the unitary matrix (with 22𝑛 elements). For example, a 15-qubit
system requires a unitary matrix of size 215 × 215, containing approximately 230 ≈ 109 complex
numbers, which requires ~16 GB of memory (assuming each complex number takes 16 bytes).
Simulating quantum evolution further escalates memory and computational costs, as applying the
unitary matrix to the statevector requires significant resources. This rapid increase in memory and
processing requirements limits the scalability of quantum simulators on conventional hardware.
To evaluate how memory usage impacts quantum simulators and hence our ability to validate them,
we analysed the efficiency of Qiskit and Cirq in measurement-based simulations, tracking only the
memory consumption during the measurement step6. We selected 345 unique circuits with varying
depths and qubit counts, simulating each circuit 1,000 times on both simulators, with 10,000 shots
per simulation. We then plotted memory usage against circuit depth and the number of qubits for
each simulator, providing a comparative view of their performance and resource utilisation. As
shown in Figure 9, Qiskit demonstrated a consistent memory usage of around 0.23 MiB across all
circuits, regardless of depth or the number of qubits. In contrast, Cirq’s memory usage fluctuated
more significantly, ranging from 1.3 MiB to 4.3 MiB, with higher memory demands observed for
circuits involving more qubits.
These findings indicate that Qiskit employs a more aggressive approach to memory management.
This observation aligns with feedback that we received from Qiskit engineers in response to a prior
issue we raised. They explained that Qiskit prioritises the optimisation of “happy paths” – the most
commonly used workflows where errors are rare. To catch type-related issues, the recommendation
was to rely on static code analysis tools like mypy [65], rather than burdening runtime with checks
that could penalise performance for the “happy paths”, which are the most common and least error-
prone. While this design philosophy ensures excellent memory efficiency and minimal performance
overhead in typical scenarios, it comes at a cost. By focusing on “happy paths”, Qiskit, as we have
highlighted in several reported issues, becomes more exposed to unconventional inputs or edge
cases, potentially compromising its robustness in less predictable or atypical situations.

6Qiskit: Aer.get_backend(’qasm_simulator’).run(transpile(circuit), shots).result();
Cirq: cirq.Simulator().run(circuit, repetitions).
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Numerical Stability and Error Accumulation. We observed that numerical precision becomes a
limiting factor when performing iterative computations. Starting with the following circuit:

     ┌───┐                                          ┌───┐             ┌───┐
q_0: ┤ X ├──────────────■───────────────────────────┤ T ├─────────────┤ Z ├─────────────■──────────■──────────■──────────
     └───┘┌─────────────┴──────────────┐            └───┘             └───┘           ┌─┴─┐      ┌─┴─┐┌───────┴────────┐
q_1: ──■──┤ U(π/2,0.63724,1.733e-06,0) ├───────────────────────────────────────────■──┤ Y ├──────┤ X ├┤ Rx(3.8388e-06) ├─
       │  └───────────┬───┬────────────┘┌───────────────────────────┐┌─────┐┌───┐┌─┴─┐├───┴┐┌───┐└─┬─┘└────┬─────┬─────┘
q_2: ──■──────────────┤ S ├─────────────┤ U(π/128,-0.049464,6.2427) ├┤ Sdg ├┤ I ├┤ H ├┤ √X ├┤ H ├──■───────┤ Tdg ├───────
                      └───┘             └───────────────────────────┘└─────┘└───┘└───┘└────┘└───┘          └─────┘

which consists of three qubits and 16 gates, we repeatedly applied the same set of gates with
varying angles, simulating the circuit in Qiskit and Cirq while comparing the statevectors at each
step. After 805 concatenations (i.e. constructing a circuit with 16 × 805 gates), we found that the
statevectors produced by Qiskit and Cirq began to diverge beyond our chosen tolerance of 10−5.
This tolerance was deliberately set to be not overly strict, as our initial, more conservative choice
of 10−12 was violated even sooner.
Below are the statevectors at the point where the tolerance was first exceeded.

Basis State Qiskit Cirq
|000⟩ −2.3258 × 10−6 + 1.8058 × 10−6 𝑗 0+ 0𝑗
|001⟩ 1.2789 × 10−6 − 2.2542 × 10−6 𝑗 0+ 0𝑗
|010⟩ 1.9366 × 10−6 + 3.5916 × 10−6 𝑗 0+ 0𝑗
|011⟩ −1.6184 × 10−6 − 3.4847 × 10−6 𝑗 0+ 0𝑗
|100⟩ 0.6968819+ 0.0320744𝑗 0.6968802+ 0.0320724𝑗
|101⟩ 0.5666165 − 0.0979956𝑗 0.5666154 − 0.0980026𝑗
|110⟩ 0.1348269 − 0.1214029𝑗 0.1348258 − 0.1214149𝑗
|111⟩ 0.2030027+ 0.3294576𝑗 0.2030029+ 0.3294574𝑗

The divergence observed between the statevectors produced by Qiskit and Cirq arises primarily from
differences in how each simulator handles floating-point precision during iterative computations.
Both simulators introduce small rounding errors with each quantum gate, but they handle these
errors differently. Qiskit retains very small non-zero values that are close to zero, which, though
seemingly negligible, still contribute to the overall statevector. Meanwhile, Cirq rounds these
small values down to exactly zero, ignoring the residuals. This discrepancy is due to the distinct
numerical precision and rounding methods employed by each simulator. While the differences
in statevectors may seem minor at first, they become more noticeable in larger circuits, where
the accumulation of rounding errors has a more significant impact over many iterations. This
difference in behaviour underscores the varying approaches each simulator takes toward numerical
accuracy and memory management, making differential benchmarking a challenge as the circuit
depth increases in simulation.

Answer to 𝑅𝑄5: Our evaluation revealed key scalability and stability differences between Qiskit
and Cirq. Qiskit maintained a stable memory footprint (0.23 MiB) across varying circuit depths
and qubit counts, whereas Cirq’s memory usage fluctuated significantly (1.3 MiB–4.3 MiB),
increasing with the number of qubits. Numerical stability: Qiskit retained near-zero values, while
Cirq rounds them to zero, leading to divergence in statevector representations over multiple
iterations and potentially affecting long-term simulation accuracy. This suggests that Qiskit
optimises memory efficiency for standard workflows but may be less robust to unconventional
inputs.

8.6 Experimental Setup

Our evaluation was conducted across a high-performance computing environment provided by
CloudLab [19] and a standard laptop (Apple M2, 16GB RAM). Circuit generation (RQ1), post-
processing, and local analysis were performed on the laptop.
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All large-scale quantum circuit simulations (RQ2–RQ5) were executed on a CloudLab node featuring
dual Intel Xeon E5-2660 v3 processors (40 logical cores, 256GB RAM). These experiments utilised a
corpus of over 800,000 unique circuits generated by FuzzQ, with qubit counts ranging from 3 to 12
and depths from 2 to 18 gates. The circuit structures included a comprehensive mix of single-qubit
(rotations, Hadamard, Pauli) and multi-qubit (CNOT) gates. For analyses based on measurement
distributions, measurements were applied to all qubits at the end of each circuit. The quantum
platform code coverage analysis (RQ1) was run on a separate CloudLab node with an Intel Xeon
Gold 5512U processor.

9 Related Work

Testing with Alloy. Alloy [27] enables rigorous system validation through the automated genera-
tion of model instances and counterexamples. By systematically exploring model specifications,
Alloy can identify under-specified or ambiguous system properties [63]. Its versatility has been
demonstrated across diverse research domains, including empirical testing of GPU compilers and
specification validation [32], memory model verification [11, 56, 57, 71], model transformation
verification [38], as well as model synthesis, repair and type system analysis [28, 60, 67]. Despite its
broad adoption, to our knowledge, this is the first application of the Alloy Analyser to model and
analyse quantum simulator behaviour. Our work demonstrates Alloy’s potential in this domain,
laying the groundwork for future quantum computing research.
Quantum Program-Level Testing. Quantum software testing is challenging, with multiple studies
highlighting the critical need for specialised testing and debugging tools for quantum programs
[22, 40, 42, 46, 47]. Several testing approaches have been explored, including property-based testing
[21], mutation-based techniques [20, 39, 70], verification methods [35, 74], statistical assertion
techniques [25, 29, 34], search-based approaches [69] and metamorphic testing [1]. Complementing
these efforts, researchers have developed quantum bug benchmarks [10, 37, 76] and identified
specific bug patterns, notably in Qiskit programs [75]. The QASMBench suite [33] provides a low-
level benchmark focusing on NISQ evaluation and simulation. Despite these advances, quantum
program testing remains a nascent field, with existing research primarily limited to small-scale
circuits of only a few qubits and dozens of gates.
Quantum Platform-Level Testing. Validating quantum simulators is critical given their potential for
unintended behaviours [22, 23]. Two recent approaches illustrate the landscape: MorphQ [30] mu-
tates valid programs via metamorphic relations and compares original vs. mutated behaviours, while
Blackwell et al. [7] use a Grammar Mutator to generate random (often invalid) QASM programs,
running them on Braket, Quantastica, and Qiskit for comparison. MorphQ offers sophisticated
mutation but with low throughput; Blackwell et al. favour speed, but at the cost of many invalid
circuits. Our method, though bounded by the same state-vector scalability limit (~15 qubits), guar-
antees structural validity through formal methods, enabling FuzzQ to reach 140 valid circuits per
second and systematically test deeper, more complex structures.

10 Limitations and Future Work

This section clarifies the practical limits of the FuzzQ framework and outlines our future research,
which is shaped by two primary factors: our initial focus on pure-state semantics and the inherent
scalability challenges of quantum simulation.
Our pure-state approach provides a well-defined validation baseline, but it also means our evaluation
on circuits up to 12 qubits is limited by the exponential cost of the post-simulation analysis phase.
This bottleneck is imposed by our oracles, which require full statevectors for comparison, and not
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by FuzzQ’s scalable Alloy-based generator. While other fuzzers manage this cost by imposing short
timeouts on arbitrarily large circuits [7, 14, 73], our methodology prioritises generating tractable,
structurally-valid circuits that can run to completion for deeper analysis. Our own coverage analysis
(Figure 6) supports this strategy, showing that code coverage on simulators saturates with small
circuits (~6-qubits). This suggests diminishing returns from simply generating larger pure-state
circuits and motivates our primary future direction: extending FuzzQ to support mixed states and
noisy simulations – an open challenge in quantum computing [5, 6, 18, 49, 68] – which we detail
in the remainder of this section.

10.1 Scope of Pure-State Validation & Path Towards Mixed-State Analysis with FuzzQ

Motivation for Initial Pure-State Focus. The FuzzQ framework, as presented, primarily validates
simulators within the pure state formalism. This initial scope was chosen for three key reasons: (1)
Semantic Clarity: Pure-state evolution via unitary transformations (𝑈 ) on statevectors (|𝜓 ⟩) provides
an unambiguous baseline for validating core functional semantics. (2) Foundational Correctness:
It allows us to isolate fundamental bugs in gate logic and transpilation before introducing the
complexities of noise. (3) Tractability: The𝑂 (2𝑁 ) memory complexity of statevectors, versus𝑂 (22𝑁 )
for density matrices, makes systematic fuzzing over large circuit spaces tractable in the pure-state
paradigm.
Implications of Mixed States: Semantics, Completeness, and Oracles. A comprehensive validation
strategy must eventually address mixed states, which are indispensable for describing realis-
tic quantum computation arising from noise or partial measurements. This transition entails a
fundamental semantic shift from unitary evolution on statevectors to Completely Positive Trace-
Preserving (CPTP) maps, or quantum channels (E), acting on density matrices (𝜌). FuzzQ’s Alloy
model (§4) can be extended to represent these noisy operations by introducing new signatures (e.g.
DepolarisingChannel), enabling the generation of test cases for these more complex scenarios.
Whilst extending the formal model is achievable, integrating full mixed-state validation directly
impacts efficiency. This extension is nevertheless vital for FuzzQ’s completeness, as it enables
validation of realistic NISQ-era scenarios and detection of bugs specific to noise models. Conse-
quently, our testing oracles (§6.2) require significant adaptation. For instance, statevector fidelity
(| ⟨𝜓𝑖 |𝜓 𝑗 ⟩ |2) must be replaced by computationally more demanding density matrix fidelity mea-
sures (e.g. Uhlmann-Jozsa fidelity, 𝐹 (𝜌1, 𝜌2) =

(
Tr

[√︁√
𝜌1𝜌2

√
𝜌1
] )2

). Similarly, the Unitary Parity
Benchmark would need to be generalised to compare entire quantum channels. Each of these
adapted oracles incurs a greater computational burden, directly affecting validation throughput. For
example, applying a Hadamard gate (𝐻 ) then a depolarising channel (𝐷 (𝑝)) to |0⟩ yields the mixed
state 𝜌out = (1 − 𝑝) |+⟩ ⟨+| + 𝑝

2 𝐼2, not the pure state |+⟩ = 𝐻 |0⟩. Validating simulator agreement
on 𝜌out requires density matrix metrics and is inherently more demanding than pure-state vector
comparison.
Scalability Challenges and FuzzQ’s Path Forward for Mixed States. The primary impediment to
extending FuzzQ with direct support for full density matrix evolution is scalability. As mentioned,
density matrix storage scales as 𝑂 (22𝑁 ). Computationally, applying a quantum channel or cal-
culating fidelities often scales as 𝑂 (23𝑁 ). These factors make systematic fuzzing that relies on
full density matrix simulation intractable for systems beyond a small number of qubits, directly
impacting FuzzQ’s ability to cover such scenarios at scale.
Recognising these severe constraints, our future work will focus on scalable oracles, such as
those based on classical shadow tomography [9], to compare statistical properties of mixed states
without reconstructing the full density matrix. However, the core FuzzQ framework is already
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capable of handling the generation and processing of noisy circuits that produce mixed states. As
demonstrated in our accompanying artifact, FuzzQ can systematically inject common noise channels
(e.g., depolarising, amplitude damping) with varying probabilities into its Alloy-generated circuit
seeds. The resulting circuits, when executed on simulators supporting density matrix evolution,
produce verifiable mixed states. For instance, our artifact includes a test case that prepares a Bell
state, applies partial tracing to deterministically create a mixed state, and correctly computes its
purity (Tr(𝜌2) ≈ 0.58), confirming the framework’s capability to handle mixed-state semantics.
This provides a solid, implemented foundation for our planned future work on developing more
advanced, scalable oracles for these noisy scenarios.

10.2 Other Avenues for Future Research and Development

Beyond mixed-state simulations, future work will focus on three key avenues. First, we will broaden
FuzzQ’s evaluation to more quantum simulators beyond Qiskit and Cirq to affirm its platform
agnosticism. FuzzQ’s modular architecture facilitates this via platform-specific backend adapters,
a process detailed and exemplified with PennyLane in our artifact (see §12). Second, a significant
long-term direction is adapting FuzzQ for direct validation against physical quantum hardware,
which introduces distinct challenges in noise characterisation and statistical analysis. Finally, we
will enhance FuzzQ’s core methodology and performance by: (1) developing more sophisticated,
quantum-specific coverage metrics; (2) empirically evaluating its bug-finding efficacy by assessing
false negative rates against known bug benchmarks (e.g., Bugs4Q [76]); and (3) investigating
strategies for parallelising quantum circuit simulations to improve performance.

11 Conclusion

This work introduced FuzzQ, an implementation-agnostic methodology for detecting and analysing
discrepancies across industrial quantum simulation frameworks. By combining lightweight formal
methods (Alloy) for structured test case generation with differential benchmarking and invariant
checking, we have developed a robust validation framework that transcends simulator-specific
architectural constraints, enabling comprehensive inter-simulator comparison.
The core contribution of our research is the unitary parity benchmark, a novel and rigorous
technique for systematically identifying and diagnosing inconsistencies such as miscompilations
and numerical inaccuracies among quantum simulators. Our extensive evaluation on Qiskit and
Cirq, involving over 800,000 quantum circuits, demonstrated FuzzQ’s efficiency in circuit generation,
its effectiveness in uncovering previously unknown bugs, and provided insights into simulator
performance characteristics.
Our research represents a unique interdisciplinary effort, merging theoretical insights from physics
with practical software engineering methodologies to advance the modelling and analysis of
quantum simulators. By offering a rigorous and automatable methodology for scrutinising these
critical tools, this work sets the stage for more reliable and precise computational approaches in
quantum computing research. The FuzzQ framework not only uncovers potential implementation
flaws but also establishes a solid foundation for continued investigations into quantum system
validation and the development of more trustworthy quantum software ecosystems.

12 Data Availability Statement

All research artifacts associated with this paper, including FuzzQ’s source code, experimental data,
and scripts for reproducability, are publicly available on Zenodo [31].
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